Wastewater treatment plant discharges can promote the development of antibiotic resistance genes in streams

Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers

Widespread use of antibiotics has led to pollution of waterways, potentially creating resistance among freshwater bacterial communities. A new study looked for antibiotic resistance genes in a river basin in Spain, revealing that wastewater discharges can promote the spread of antibiotic resistance in streams and small rivers.

Abstract

Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers, ScienceDirect, Environmental Pollution, Volume 210, March 2016, Pages 121–128.

The extensive use of antibiotics in human and veterinary medicine and their subsequent release into the environment may have direct consequences for autochthonous bacterial communities, especially in freshwater ecosystems. In small streams and rivers, local inputs of wastewater treatment plants (WWTPs) may become important sources of organic matter, nutrients and emerging pollutants, such as antibiotic resistance genes (ARGs).

In this study, we evaluated the effect of WWTP effluents as a source of ARGs in river biofilms. The prevalence of genes conferring resistance to main antibiotic families, such as beta-lactams (blaCTX-M), fluoroquinolones (qnrS), sulfonamides (sul I), and macrolides (ermB), was determined using quantitative PCR (qPCR) in biofilm samples collected upstream and downstream WWTPs discharge points in four low-order streams. Our results showed that the WWTP effluents strongly modified the hydrology, physico-chemistry and biological characteristics of the receiving streams and favoured the persistence and spread of antibiotic resistance in microbial benthic communities. It was also shown that the magnitude of effects depended on the relative contribution of each WWTP to the receiving system. Specifically, low concentrations of ARGs were detected at sites located upstream of the WWTPs, while a significant increase of their concentrations was observed in biofilms collected downstream of the WWTP discharge points (particularly ermB and sul I genes). These findings suggest that WWTP discharges may favour the increase and spread of antibiotic resistance among streambed biofilms. The present study also showed that the presence of ARGs in biofilms was noticeable far downstream of the WWTP discharge (up to 1 km).

It is therefore reasonable to assume that biofilms may represent an ideal setting for the acquisition and spread of antibiotic resistance determinants and thus be considered suitable biological indicators of anthropogenic pollution by active pharmaceutical compounds.

Author: DES Daughter

Activist, blogger and social media addict committed to shedding light on a global health scandal and dedicated to raise DES awareness.

Have your say! Share your views

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.