POLE-mutated clear cell cervical cancer associated with in-utero diethylstilbestrol exposure

Gynecologic Oncology Reports, Volume 28, Pages 15-17, May 2019

2019 Study Highlights

  • We report a POLE-mutated clear cell cervical cancer associated with in-utero DES.
  • Tumor exhibited increased tumor infiltrating lymphocytes and PD-L1 expression.
  • Patient remains in remission for ≥4 years after standard therapy.
  • POLE mutation confers a phenotype of higher immunogenicity and improved outcome.

Abstract

We report an extraordinary case of a woman, exposed to diethylstilbestrol in utero, who developed clear cell adenocarcinoma of the cervix with a concurrent polymerase-Ɛ (POLE) somatic mutation. The tumor exhibited the classic phenotypic characteristics of POLE-mutated tumors originating from other organs (e.g. the uterus or the colon) including increased tumor infiltrating lymphocytes and high PD-L1 expression and has remained in remission since completion of primary therapy for >4 years. This case highlights the importance of next generation sequencing in unraveling the biology of rare tumors and supports that the presence of a POLE mutation and the associated ultramutated state confers a unique phenotype of higher immunogenicity and possibly improved prognosis in a tissue-agnostic manner, i.e. regardless of the type of cancer where the POLE mutation is present. Image credit bioinfo.

DES DiEthylStilbestrol Resources

Author: DES Daughter

Activist, blogger and social media addict committed to shedding light on a global health scandal and dedicated to raise DES awareness.

Have your say! Share your views

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.