Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A

BPS, BPF, BPB and chlorinated derivatives likely to have similar effects than BPA

Bisphenol A (BPA) is a chemical that is widespread in the environment. Researchers reviewed and critically discussed the sources and routes of human exposure to chlorinated derivatives (ClxBPA) and alternatives to BPA (BPF, BPS), as well as their metabolism, toxicity and concentrations in human tissues. The researchers suggest BPA alternatives and derivatives may have similar effects, and provide directions for future research.

Abstract

Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A, ScienceDirect, Environmental Pollution, Volume 85, December 2015, Pages 352–379.

The high reactivity of bisphenol A (BPA) with disinfectant chlorine is evident in the instantaneous formation of chlorinated BPA derivatives (ClxBPA) in various environmental media that show increased estrogen-activity when compared with that of BPA.

The documented health risks associated with BPA exposures have led to the gradual market entry of BPA structural analogs, such as bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), etc. A suite of exposure sources to ClxBPA and BPA analogs in the domestic environment is anticipated to drive the nature and range of halogenated BPA derivatives that can form when residual BPA comes in contact with disinfectant in tap water and/or consumer products.

The primary objective of this review was to survey all available studies reporting biomonitoring protocols of ClxBPA and structural BPA analogs (BPS, BPF, BPB, etc.) in human matrices. Focus was paid on describing the analytical methodologies practiced for the analysis of ClxBPA and BPA analogs using hyphenated chromatography and mass spectrometry techniques, because current methodologies for human matrices are complex. During the last decade, an increasing number of ecotoxicological, cell-culture and animal-based and human studies dealing with ClxBPA exposure sources and routes of exposure, metabolism and toxicity have been published. Up to date findings indicated the association of ClxBPA with metabolic conditions, such as obesity, lipid accumulation, and type 2 diabetes mellitus, particularly in in-vitro and in-vivo studies. We critically discuss the limitations, research needs and future opportunities linked with the inclusion of ClxBPA and BPA analogs into exposure assessment protocols of relevant epidemiological studies.

Have your say! Share your views