BPA bad for children’s hearts, study suggests

Early BPA exposure may influence cardiac function, according to new study in neonatal rats

A new study paves the way for translational research examining cardiovascular disease risk factors associated with short-term BPA exposure in infancy. By examining neonatal rat heart cells, researchers find the immature heart may respond to BPA with a slowed heart rate, irregular heart rhythm and calcium instabilities. The significance of this research is that plastics revolutionized the way doctors treat young patients, especially patients with compromised immune or cardiac function.

2018 Study Abstract

Bisphenol chemicals are commonly used in the manufacturing of polycarbonate plastics, polyvinyl chloride plastics, resins, and thermal printing applications. Humans are inadvertently exposed to bisphenols through contact with consumer products and/or medical devices. Recent reports have shown a link between bisphenol-a (BPA) exposure and adverse cardiovascular outcomes; although these studies have been limited to adult subjects and models. Since cardiac physiology differs significantly between the developing and adult heart, we aimed to assess the impact of BPA exposure on cardiac function, using a neonatal cardiomyocyte model. Neonatal rat ventricular myocytes were monitored to assess cell viability, spontaneous beating rate, beat rate variability, and calcium-handling parameters in the presence of control or bisphenol-supplemented media. A range of doses were tested to mimic environmental exposure (10−9–10−8M), maximum clinical exposure (10−5M), and supraphysiological exposure levels (10−4M). Acute BPA exposure altered cardiomyocyte functionality, resulting in a slowed spontaneous beating rate and increased beat rate variability. BPA exposure also impaired intracellular calcium handling, resulting in diminished calcium transient amplitudes, prolonged calcium transient upstroke and duration time. Alterations in calcium handling also increased the propensity for alternans and skipped beats. Notably, the effect of BPA-treatment on calcium handling was partially reversible. Our data suggest that acute BPA exposure could precipitate secondary adverse effects on contractile performance and/or electrical alternans, both of which are dependent on intracellular calcium homeostasis.

More Information

  • Disruption of neonatal cardiomyocyte physiology following exposure to bisphenol-a, nature, 09 May 2018.
  • Early BPA exposure may influence cardiac function, according to new study in neonatal rats, sciencedaily, May 14, 2018.
  • Image credit James Graham.

Have your say! Share your views