Early-life exposure to DES induces life reprogramming of the mouse uterine epigenome

Neonatal exposure to DES induced permanent alterations in DNA methylation status of specific genes in mouse uteri

lab-mouse
Neonatal exposure to DES induced permanent alterations in DNA methylation status of specific genes in mouse uteri.

2008 Study Summary

We have provided evidence that early-life exposure of the mice to the xenoestrogen Diethylstilbestrol (DES) or the phytoestrogen GEN induces life reprogramming of the mouse uterine epigenome. Specific genes with no previously documented associations with the uterus were identified by an unbiased methylation profiling methodology. These genes encode proteins involved in a wide-range of cellular functions. Detailed studies were conducted on one of the reprogrammable genes, Nucleosomal Binding Protein 1 (Nsbp1), which is a nucleosome binding and transcriptional activation element. Our data support the paradigm that manifestation of early-life epigenetic reprogrammed gene expression in the mouse uterus is dependent on adult ovarian steroids and changes over the course of natural aging of the animal. The complex interplay among the type of estrogen, timing of exposure, reproductive status, and aging time line all significantly contribute to the phenotypical outcome of the epigenetic reprogramming in this model system.

Sources and Full Study
  • Persistent Hypomethylation in the Promoter of Nucleosomal Binding Protein 1 (Nsbp1) Correlates with Overexpression of Nsbp1 in Mouse Uteri Neonatally Exposed to Diethylstilbestrol or Genistein, NCBI, Endocrinology. 2008;149(12):5922-5931. doi:10.1210/en.2008-0682, PMC2613067, Dec 2008.
More DES DiEthylStilbestrol Resources

2 thoughts on “Early-life exposure to DES induces life reprogramming of the mouse uterine epigenome”

Have your say! Share your views