Endocrine disruptors alter female reproduction throughout multiple generations

OR23-1 Transgenerational Effects of Endocrine Disrupting Chemicals on Pubertal Timing through Epigenetic Reprogramming of the Hypothalamus

According to a recent animal study, endocrine disruptors, hormone-altering chemicals that are widespread in our environment, can shape the brain through four generations, altering offspring’s maternal behavior, sexual development and reproduction, The Endocrine Society reports.

Abstract

Endocrine disrupting chemicals (EDCs) are a rising concern for public health due to their ubiquitous presence as complex mixtures affecting development throughout generations. Our goal was to study the effect of a mixture of EDCs on female sexual development during 3 generations. Female rats (F0 generation) were orally exposed to a mixture of 14 anti-androgenic and estrogenic EDCs or corn oil for 2 weeks before and throughout gestation and until weaning. The mixture was composed of plasticizers (BPA, DBP, DEHP), fungicides/pesticides (Vinclozolin, Procymidon, Prochloraz, Epoxynazole, Linurone, p-p’-DDT), UV filters (4-MBC, OMC), Butyl Paraben and the analgesic Acetaminophen. The doses were in the micrograms/kg range in order to represent human exposure. Sexual development (vaginal opening, GnRH interpulse interval and estrous cyclicity) as well as maternal behavior were studied from F1 to F3 generations. At PND21 the mediobasal hypothalamus of the F1 and F3 were removed for gene expression analysis by RNAseq and RT-qPCR as well as for Chromatin Immunoprecipitation of histone modifications at regulatory regions of target genes. While F2 and F3 females showed delayed vaginal opening, decreased percentage of regular estrous cycles and decreased GnRH interpulse interval, no such changes were detected in F1 animals. These reproductive phenotypes were associated with alterations in both transcriptional and histone posttranslational modifications of hypothalamic genes involved in reproductive competence and behavior like kisspeptin (Kiss1), oxytocin (Oxt), estrogen (Esr1), glutamate (Grin2d), dopamine signaling (Th and Drd1) as well as glucocorticoid activity (Nr3c1 and Crh). Concomitant with a decrease in transcriptional activity, we have observed either a decrease of active histone marks (H3K4me3, H3K9ac) for Esr1 and Oxt promoter regions, an increase of repressive histone modifications (H3K27me3, H3K9me3) for Grin2D, Th and Nr3c1 promoter regions or both for the Kiss1 promoter. Up-regulated genes (Pomc, and CRH) showed decreased H3K9me3 and increased H3K9ac at their 5’regulatory regions. F1 females that were exposed in utero to the EDC mixture, showed a reduction in Th mRNA expression and decreased grooming/licking behavior while spending more time resting alone. These alterations on maternal behavior are known to cause transgenerational alterations of the development of the corticotropic and gonadotropic axis. Overall, our data shows that gestational and lactational exposure to an environmentally relevant EDC mixture transgenerationally affects sexual development throughout epigenetic reprogramming of the hypothalamus. Such effects could be mediated by alterations of maternal behavior caused by exposure of the first generation to the EDC mixture.

About DES and the GENES

Have your say ! Share your views