Air Pollution and Autism: more Evidence that Environmental Toxins play a Role in ASD

Growing evidence that ASD is linked to pollution, with babies 283% more likely to suffer from the condition compared to other birth defects…

Environmental and State-Level Regulatory Factors Affect the Incidence of Autism and Intellectual Disability

A PLOS Computational Biology Journal article offers strong evidence that environmental toxins play a role in the autism spectrum disorder. The research looked at birth defects associated with parental exposure to pollution and found a 1% increase in the defects corresponded to a 283% increase in autism.

Abstract
image of PLOS Computational Biology logo
An open-access, peer-reviewed journal. @PLOSCompBiol tweets for the PLOS Computational Biology team.

Many factors affect the risks for neurodevelopmental maladies such as autism spectrum disorders (ASD) and intellectual disability (ID). To compare environmental, phenotypic, socioeconomic and state-policy factors in a unified geospatial framework, we analyzed the spatial incidence patterns of ASD and ID using an insurance claims dataset covering nearly one third of the US population. Following epidemiologic evidence, we used the rate of congenital malformations of the reproductive system as a surrogate for environmental exposure of parents to unmeasured developmental risk factors, including toxins. Adjusted for gender, ethnic, socioeconomic, and geopolitical factors, the ASD incidence rates were strongly linked to population-normalized rates of congenital malformations of the reproductive system in males (an increase in ASD incidence by 283% for every percent increase in incidence of malformations, 95% CI: [91%, 576%], p<6×10−5). Such congenital malformations were barely significant for ID (94% increase, 95% CI: [1%, 250%], p = 0.0384). Other congenital malformations in males (excluding those affecting the reproductive system) appeared to significantly affect both phenotypes: 31.8% ASD rate increase (CI: [12%, 52%], p<6×10−5), and 43% ID rate increase (CI: [23%, 67%], p<6×10−5). Furthermore, the state-mandated rigor of diagnosis of ASD by a pediatrician or clinician for consideration in the special education system was predictive of a considerable decrease in ASD and ID incidence rates (98.6%, CI: [28%, 99.99%], p = 0.02475 and 99% CI: [68%, 99.99%], p = 0.00637 respectively). Thus, the observed spatial variability of both ID and ASD rates is associated with environmental and state-level regulatory factors; the magnitude of influence of compound environmental predictors was approximately three times greater than that of state-level incentives. The estimated county-level random effects exhibited marked spatial clustering, strongly indicating existence of as yet unidentified localized factors driving apparent disease incidence. Finally, we found that the rates of ASD and ID at the county level were weakly but significantly correlated (Pearson product-moment correlation 0.0589, p = 0.00101), while for females the correlation was much stronger (0.197, p<2.26×10−16).

Sources and Press releases

Older Related Articles

Air Pollution and Newly Diagnostic Autism Spectrum Disorders: A Population-Based Cohort Study in Taiwan

Abstract

There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD). The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance weighting method was used to form exposure parameter for ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particles with aerodynamic diameter less than 10 µm (PM10). Time-dependent Cox proportional hazards (PH) model was performed to evaluate the relationship between yearly average exposure air pollutants of preceding years and newly diagnostic ASD. The risk of newly diagnostic ASD increased according to increasing O3, CO, NO2, and SO2 levels. The effect estimate indicating an approximately 59% risk increase per 10 ppb increase in O3 level (95% CI 1.42–1.79), 37% risk increase per 10 ppb in CO (95% CI 1.31–1.44), 340% risk increase per 10 ppb increase in NO2 level (95% CI 3.31–5.85), and 17% risk increase per 1 ppb in SO2 level (95% CI 1.09–1.27) was stable with different combinations of air pollutants in the multi-pollutant models. Our results provide evident that children exposure to O3, CO, NO2, and SO2 in the preceding 1 year to 4 years may increase the risk of ASD diagnosis.

Sources PLOSone September 25, 2013DOI: 10.1371/journal.pone.0075510

Autism Spectrum Disorders in Relation to Distribution of Hazardous Air Pollutants in the San Francisco Bay Area

Abstract

Objective
To explore possible associations between autism spectrum disorders (ASD) and environmental exposures, we linked the California autism surveillance system to estimated hazardous air pollutant (HAP) concentrations compiled by the U.S. Environmental Protection Agency.

Methods
Subjects included 284 children with ASD and 657 controls, born in 1994 in the San Francisco Bay area. We assigned exposure level by census tract of birth residence for 19 chemicals we identified as potential neurotoxicants, developmental toxicants, and/or endocrine disruptors from the 1996 HAPs database. Because concentrations of many of these were highly correlated, we combined the chemicals into mechanistic and structural groups, calculating summary index scores. We calculated ASD risk in the upper quartiles of these group scores or individual chemical concentrations compared with below the median, adjusting for demographic factors.

Results
The adjusted odds ratios (AORs) were elevated by 50% in the top quartile of chlorinated solvents and heavy metals [95% confidence intervals (CIs), 1.1–2.1], but not for aromatic solvents. Adjusting for these three groups simultaneously led to decreased risks for the solvents and increased risk for metals (AORs for metals: fourth quartile = 1.7; 95% CI, 1.0–3.0; third quartile = 1.95; 95% CI, 1.2–3.1). The individual compounds that contributed most to these associations included mercury, cadmium, nickel, trichloroethylene, and vinyl chloride.

Conclusions
Our results suggest a potential association between autism and estimated metal concentrations, and possibly solvents, in ambient air around the birth residence, requiring confirmation and more refined exposure assessment in future studies.

Sources NCBI Environ Health Perspect. Sep 2006; 114(9): 1438–1444 PMC1570060