Disinfection by-products in drinking water : an emerging health concern

Evaluating gas chromatography with a halogen-specific detector for the determination of disinfection by-products in drinking water

DBPs come in many classes and are chemically diverse, making them challenging to monitor. Swedish researchers have evaluated a new method for the simultaneous determination of a broader range of DBPs than typically possible using other available techniques. The method uses gas chromatography (a laboratory technique that separates and analyses vaporisable compounds in a mixture), together with a halogen-specific detector (XSD). Having been tested in real water samples from two municipal waterworks in Sweden, the method has been optimised for the simultaneous determination of a wide range of neutral DBPs.

2018 Study Abstract

The occurrence of disinfection by-products (DBPs) in drinking water has become an issue of concern during the past decades. The DBPs pose health risks and are suspected to cause various cancer forms, be genotoxic, and have negative developmental effects. The vast chemical diversity of DBPs makes comprehensive monitoring challenging. Only few of the DBPs are regulated and included in analytical protocols. In this study, a method for simultaneous measurement of 20 DBPs from five different structural classes (both regulated and non-regulated) was investigated and further developed for 11 DBPs using solid-phase extraction and gas chromatography coupled with a halogen-specific detector (XSD). The XSD was highly selective towards halogenated DBPs, providing chromatograms with little noise. The method allowed detection down to 0.05 μg L−1 and showed promising results for the simultaneous determination of a range of neutral DBP classes. Compounds from two classes of emerging DBPs, more cytotoxic than the “traditional” regulated DBPs, were successfully determined using this method. However, haloacetic acids (HAAs) should be analyzed separately as some HAA methyl esters may degrade giving false positives of trihalomethanes (THMs). The method was tested on real water samples from two municipal waterworks where the target DBP concentrations were found below the regulatory limits of Sweden.