Glyphosate could be altering the wildlife and organisms at the base of the food chain

Glyphosate impairs learning in mosquito larvae (Aedes aegypti) at field-realistic doses

Glyphosate-based herbicides are not supposed to harm wildlife. But lab studies – such as this – keep finding otherwise…

What’s the world’s most widely used herbicide doing to tiny critters? asks Environmental Health News. Image Darron Birgenheier.

2019 Study Abstract

Glyphosate is the most widely used herbicide in the world. In the last years, the number of studies revealing deleterious effects of glyphosate on non-target species has been increasing. We studied the impact of glyphosate at field-realistic doses on learning in mosquito larvae (Aedes aegypti). Larvae of A. aegypti live in small water bodies and perform a stereotyped escape response when a moving object projects its shadow on the water surface. Repeated presentations of an innocuous visual stimulus induce a decrease in response due to habituation, a non-associative form of learning. In this study, different groups of larvae were reared in water containing different concentrations of glyphosate that can be found in the field (50 µg/l, 100 µg/l, 210 µg/l and 2 mg/l). Larvae reared in a glyphosate solution of 2 mg/l could complete their development. However, glyphosate impaired habituation. The higher the dose, the stronger the deleterious effects on learning abilities. This protocol opens new avenues to further studies aiming at understanding how glyphosate affects non-target organisms as insects. Habituation in mosquito larvae could serve as a parameter for testing the impact of pollutants in water bodies.

40 years after exposure, Pesticide linked to higher breast cancer risk

DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows

According to a recent study, DDT exposure before puberty may have increased the breast cancer risk for women in their 50s. Study is the latest to suggest early-life exposures, even prior to birth, may hold the key to understanding who gets diseases, Environmental Health News reports.

2019 Study Abstract

Background
In a previous Child Health and Development Studies report, p, p’-DDT was associated with a fivefold increased risk of premenopausal (before age 50 years) breast cancer for women first exposed before puberty. Here we extend our observation to breast cancer diagnosed during early postmenopause (ages 50–54 years) to determine whether age at diagnosis modifies the interaction of DDT with age at exposure.

Methods
We conducted a second prospective, nested case-control study in the Child Health and Development Studies (153 incident breast cancer cases diagnosed at ages 50–54 years and 432 controls matched to cases on birth year). These were analyzed separately and pooled with our previous study (129 breast cancer cases diagnosed at ages 31–49 years and 129 controls matched on birth year). Blood samples were obtained during pregnancy (median age, 26 years), 1–3 days after delivery from 1959 to 1967 in Oakland, California. Serum was assayed for p, p’-DDT, o, p’-DDT, and p, p’-DDE. Odds ratios (ORs) below are given for doubling of serum p, p’-DDT. All statistical tests were two-sided.

Results
For early postmenopausal breast cancer, p, p’-DDT was associated with risk for all women (ORDDT 50–54 = 1.99, 95% CI = 1.48 to 2.67). This association was accounted for by women first exposed to DDT after infancy (ORDDT 50–54 for first exposure after infancy = 2.83, 95% CI = 1.96 to 4.10 vs ORDDT 50–54 for first exposure during infancy = 0.56, 95% CI = 0.26 to 1.19; Pinteraction DDT x age at first exposure = .01). In contrast, for premenopausal breast cancer, p, p’-DDT was associated with risk among women first exposed during infancy through puberty, but not after (ORDDT<50 for first exposure during infancy = 3.70, 95% CI = 1.22 to 11.26, Pinteraction DDT x age at first exposure x age at diagnosis = .03).

Conclusions
p, p’-DDT was associated with breast cancer through age 54 years. Risk depended on timing of first exposure and diagnosis age, suggesting susceptibility windows and an induction period beginning in early life. DDT appears to be an endocrine disruptor with responsive breast targets from in utero to menopause.

Fracking linked to increased hospitalizations for skin, genital and urinary issues

Unconventional natural gas development and hospitalizations: evidence from Pennsylvania, United States, 2003–2014

According to a new study, rashes, urinary tract infections, and kidney stones requiring hospital stays are more common in areas with more drilling, Environmental Health News reports.

Highlights

  • Long-term exposure to unconventional drilling may be harmful to population health.
  • Genitourinary and skin-related hospitalization rates increase with drilling.
  • Healthcare professionals should encourage exposed individuals to seek care early.
  • Research into the causal mechanisms is warranted.

Abstract

Objectives
To examine relationships between short-term and long-term exposures to unconventional natural gas development, commonly known as fracking, and county hospitalization rates for a variety of broad disease categories.

Study design
This is an ecological study based on county-level data for Pennsylvania, United States, 2003–2014.

Methods
We estimated multivariate regressions with county and year fixed effects, using two 12-year panels: all 67 Pennsylvania counties and 54 counties that are not large metropolitan.

Results
After correcting for multiple comparisons, we found a positive association of cumulative well density (per km2) with genitourinary hospitalization rates. When large metropolitan counties were excluded, this relationship persisted, and positive associations of skin-related hospitalization rates with cumulative well count and well density were observed. The association with genitourinary hospitalization rates is driven by females in 20–64 years group, particularly for kidney infections, calculus of ureter, and urinary tract infection. Contemporaneous wells drilled were not significantly associated with hospitalizations after adjustment for multiple comparisons.

Conclusions
Our study shows that long-term exposure to unconventional gas development may have an impact on prevalence of hospitalizations for certain diseases in the affected populations and identifies areas of future research on unconventional gas development and health.

What are you putting on your baby? Or on your genitals?

Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products

2019 Study Highlights

  • Three VOCs and 4 phthalates were measured in commercial sanitary pads and diapers.
  • Air in the packages of sanitary pads and diapers contained as high as 5.9 ppb of VOCs.
  • Sanitary pads and diapers contained as high as 8,014.9 ppb of phthalates.
  • VOCs and phthalates contained in the commercial products considerably vary among the brands.

Abstract

Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.

 

Fracking chemicals entering the food chain

Accumulation of Marcellus Formation Oil and Gas Wastewater Metals in Freshwater Mussel Shells

Radioactive fracking chemicals dumped in the Allegheny River a decade ago are still showing up in mussels, Environmental Health News
reports. Chemicals from fracking wastewater dumped into Pennsylvania’s Allegheny River before 2011 are still accumulating in the bodies of freshwater mussels downstream, according to a new study.

Abstract

For several decades, high-salinity water brought to the surface during oil and gas (O&G) production has been treated and discharged to waterways under National Pollutant Discharge Elimination System (NPDES) permits.

In Pennsylvania, USA, a portion of the treated O&G wastewater discharged to streams from 2008 to 2011 originated from unconventional (Marcellus) wells.

We collected freshwater mussels, Elliptio dilatata and Elliptio complanata, both upstream and downstream of a NPDES-permitted facility, and for comparison, we also collected mussels from the Juniata and Delaware Rivers that have no reported O&G discharge.

We observed changes in both the Sr/Cashell and 87Sr/86Srshell in shell samples collected downstream of the facility that corresponded to the time period of greatest Marcellus wastewater disposal (2009–2011). Importantly, the changes in Sr/Cashell and 87Sr/86Srshell shifted toward values characteristic of O&G wastewater produced from the Marcellus Formation. Conversely, shells collected upstream of the discharge and from waterways without treatment facilities showed lower variability and no trend in either Sr/Cashell or 87Sr/86Srshell with time (2008–2015).

These findings suggest that

  1. freshwater mussels may be used to monitor changes in water chemistry through time and help identify specific pollutant sources
  2. and O&G contaminants likely bioaccumulated in areas of surface water disposal.

How (living) close to a fracking site is too close (to residents for safety) ?

Setback distances for unconventional oil and gas development: Delphi study results

Regulations on how close fracking facilities can be to buildings and homes in Pennsylvania are too lax to adequately protect public health, according to a new study.

To protect public health, a panel of experts recommends more than doubling the required distance between frack wells and homes, Environmental Health News reports, Aug 23, 2018.

Abstract

Emerging evidence indicates that proximity to unconventional oil and gas development (UOGD) is associated with health outcomes. There is intense debate about “How close is too close?” for maintaining public health and safety.

The goal of this Delphi study was to elicit expert consensus on appropriate setback distances for UOGD from human activity.

Three rounds were used to identify and seek consensus on recommended setback distances. The 18 panelists were health care providers, public health practitioners, environmental advocates, and researchers/scientists. Consensus was defined as agreement of ≥70% of panelists.

  1. Content analysis of responses to Round 1 questions revealed four categories:
    1. recommend setback distances;
    2. do not recommend setback distances;
    3. recommend additional setback distances for vulnerable populations;
    4. do not recommend additional setback distances for vulnerable populations.
  2. In Round 2, panelists indicated their level of agreement with the statements in each category using a five-point Likert scale.
  3. Based on emerging consensus, statements within each category were collapsed into seven statements for Round 3:
    • recommend set back distances of <¼ mile;
    • ¼—½ mile;
    • 1–1 ¼ mile;
    • and ≥ 2 mile;
    • not feasible to recommend setback distances;
    • recommend additional setbacks for vulnerable groups;
    • not feasible to recommend additional setbacks for vulnerable groups.

The panel reached consensus that setbacks of < ¼ mile should not be recommended and additional setbacks for vulnerable populations should be recommended. The panel did not reach consensus on recommendations for setbacks between ¼ and 2 miles.

The results suggest that if setbacks are used the distances should be greater than ¼ of a mile from human activity, and that additional setbacks should be used for settings where vulnerable groups are found, including schools, daycare centers, and hospitals. The lack of consensus on setback distances between 1/4 and 2 miles reflects the limited health and exposure studies and need to better define exposures and track health.

Stress and depression higher among people living near fracking sites

Associations of unconventional natural gas development with depression symptoms and disordered sleep in Pennsylvania

People who live near unconventional natural gas operations such as fracking are more likely to experience depression, Environmental Health News reports.
Featured image credit frackfreeryedale.org.

Abstract

Environmental and community factors may influence the development or course of depression and sleep problems.

In this study, we evaluated the association of unconventional natural gas development (UNGD) with depression symptoms and disordered sleep diagnoses using the Patient Health Questionnaire-8 and electronic health record data among Geisinger adult primary care patients in Pennsylvania.
Participants received a retrospective metric for UNGD at their residence (very low, low, medium, and high) that incorporated dates and durations of well development, distance from patient homes to wells, and well characteristics.

Analyses included 4,762 participants with no (62%), mild (23%), moderate (10%), and moderately severe or severe (5%) depression symptoms in 2014–2015 and 3,868 disordered sleep diagnoses between 2009–2015. We observed associations between living closer to more and bigger wells and depression symptoms, but not disordered sleep diagnoses in models weighted to account for sampling design and participation.

High UNGD (vs. very low) was associated with depression symptoms in an adjusted negative binomial model (exponentiated coefficient = 1.18, 95% confidence interval [CI]: 1.04–1.34). High and low UNGD (vs. very low) were associated with depression symptoms (vs. none) in an adjusted multinomial logistic model.

Our findings suggest that UNGD may be associated with adverse mental health in Pennsylvania.

Link between fracking chemicals and immune system problems

Developmental Exposure to a Mixture of 23 Chemicals Associated With Unconventional Oil and Gas Operations Alters the Immune System of Mice

Chemicals commonly found in groundwater near fracked oil and gas wells appear to impair the proper functioning of the immune system, Environmental Health News reports.

The new study suggests that baby girls born to mothers near fracking wells may not fight diseases later in life as well as they could have with a pollution-free pregnancy.

2018 Study Abstract

Chemicals used in unconventional oil and gas (UOG) operations have the potential to cause adverse biological effects, but this has not been thoroughly evaluated. A notable knowledge gap is their impact on development and function of the immune system.

Herein, we report an investigation of whether developmental exposure to a mixture of chemicals associated with UOG operations affects the development and function of the immune system. We used a previously characterized mixture of 23 chemicals associated with UOG, and which was demonstrated to affect reproductive and developmental endpoints in mice. C57Bl/6 mice were maintained throughout pregnancy and during lactation on water containing two concentrations of this 23-chemical mixture, and the immune system of male and female adult offspring was assessed. We comprehensively examined the cellularity of primary and secondary immune organs, and used three different disease models to probe potential immune effects: house dust mite-induced allergic airway disease, influenza A virus infection, and experimental autoimmune encephalomyelitis (EAE). In all three disease models, developmental exposure altered frequencies of certain T cell sub-populations in female, but not male, offspring. Additionally, in the EAE model disease onset occurred earlier and was more severe in females.

Our findings indicate that developmental exposure to this mixture had persistent immunological effects that differed by sex, and exacerbated responses in an experimental model of autoimmune encephalitis. These observations suggest that developmental exposure to complex mixtures of water contaminants, such as those derived from UOG operations, could contribute to immune dysregulation and disease later in life.

Serious health hazards for infants and children living near fracking sites

Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children

Multiple pollutants found in the air and water near fracked oil and gas sites are linked to brain problems in children.

2017 Study Abstract

Heavy metals (arsenic and manganese), particulate matter (PM), benzene, toluene, ethylbenzene, xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs) and endocrine disrupting chemicals (EDCs) have been linked to significant neurodevelopmental health problems in infants, children and young adults.

These substances are widely used in, or become byproducts of unconventional oil and natural gas (UOG) development and operations. Every stage of the UOG lifecycle, from well construction to extraction, operations, transportation and distribution can lead to air and water contamination. Residents near UOG operations can suffer from increased exposure to elevated concentrations of air and water pollutants.

Here we focus on five air and water pollutants that have been associated with potentially permanent learning and neuropsychological deficits, neurodevelopmental disorders and neurological birth defects. Given the profound sensitivity of the developing brain and central nervous system, it is reasonable to conclude that young children who experience frequent exposure to these pollutants are at particularly high risk for chronic neurological diseases.

More research is needed to understand the extent of these concerns in the context of UOG, but since UOG development has expanded rapidly in recent years, the need for public health prevention techniques, well-designed studies and stronger state and national regulatory standards is becoming increasingly apparent.

More Information

  • Full study (free access) Neurodevelopmental and neurological effects of chemicals associated with unconventional oil and natural gas operations and their potential effects on infants and children, Reviews on Environmental Health, doi.org/10.1515/reveh-2017-0008, 2017-10-25.
  • Fracking chemicals and kids’ brains don’t mix: Study, Environmental Health News, 2017-10-25.
  • Featured image credit WildEarth Guardians and @EnvirHealthNews.

Efficient technology to remove BPA and similar chemicals from water

A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water

As water treatment plants struggle to keep up with the chemical cocktail heading into our pipes, researchers say they’ve come up with a solution to remove one of the most ubiquitous contaminants—BPA.

There now exists economically viable, efficient technology to remove bisphenol A (BPA) and a host of similar chemicals from water.

2017 Study Conclusion

In developing Green Chemistry, it is important that chemists come to understand the scope of the challenges posed by everyday-everywhere endocrine disruptors (EDs) to the sustainability of both the chemical enterprise and our complex global civilization. The most troubling such EDs, like BPA, invariably hold their protected positions in the economy because of seductive technical and cost performances that enable large, diverse, profitable markets. For sustainable chemicals, the health, environmental and fairness performances also have to be integral components of the value proposition. Understanding the negative performances of unsustainable chemicals helps in mapping the properties sustainable chemicals should not have. Key aspects of this understanding include the knowledge of which chemicals are and are not EDs and are and are not capable of eliciting low dose adverse effects by non-endocrine processes, the extent and routes by which the environment and people are exposed to commercial EDs, the environmental and human health consequences of ED exposures, the methods of assessment of endocrine activity including the TiPED, the mechanisms of the low dose adverse effects, the design approaches to attaining new and replacement chemicals free of such effects, and the stewardship methodologies that are currently deployed or might be deployed to better protect health and the environment from commercial EDs. This BPA case study traverses the appropriate multidisciplinary landscape with emphasis on the integration of chemistry and environmental health science in the development of endocrine disruption-free processes to aid the chemical enterprise and society in reducing BPA exposures. Importantly, the litany of unfortunate facts presented about BPA exposures and health and environmental performances is relieved to some extent by the possibility of reduced releases arising from the TAML/H2O2 technology mapped out in the empirical section.

This experimental component demonstrates that TAML/H2O2 provides simple, effective water treatment methodologies, which depending on the pH, either decompose BPA or isolate it in low solubility oligomers. Both processes require only very low concentrations of TAML activator and H2O2 in further reflection of the remarkable efficiencies of the peroxidase enzymes that are faithfully mimicked by TAML activator and in marked contrast with the much higher relative iron- and peroxide-requiring Fenton processes. It remains to be established whether the current laboratory studies project to real world scenarios. These may include treatment of BPA-contaminated landfill leachates and paper plant processing solutions where the concentrations are similar to those employed in this study. In such scenarios, TAML/H2O2 would present an enzyme-mimicking method which in the case of TAML activator is comprised exclusively of biochemically common elements and has passed multiple TiPED assays that, in contrast with existing real world processes, avoids generation of BPA-contaminated sludges and associated subsequent releases to soil, that does not generate a contaminated adsorbent which must be replaced or regenerated at elevated temperature, that does not generate chlorinated forms of BPA, that does not generate a concentrated retentate, and that is remarkably simple to deploy using very low and cheap chemical inputs with all the positive potential consequences thereof for capital and operating expenses.

Finally, in order to avoid the habit or perception of greenwashing, a realistic perspective is essential to the integrity of green chemistry. We view the sustainability challenges posed by BPA as enormous—the experimental work presented could evolve into a solution for some of these problems but is, by no means, a general quick fix. BPA markets large and small are expanding rapidly, especially as the industry has learned how to produce even more effective replacements for glass and metal products. Huge new markets are developing such as those of plastic glass houses, and even houses, and automobile body parts that are comprised primarily of BPA. In this build-up, BPA’s unfortunate health and environmental performances continue to be given short shrift. Continuation of the present BPA expansion trends without limits, technical corrections and more aggressive stewardship advances of multiple kinds will menace society with an ever increasing oestrogenization of the entire ecosphere.

Sources and More Information
  • BPA breakthrough: New treatment takes controversial chemical out of water, EHN, August 2, 2017.
  • Science: Pay attention to two other messages in the breakthrough BPA water treatment paper, EHN, August 8, 2017.
  • A multidisciplinary investigation of the technical and environmental performances of TAML/peroxide elimination of Bisphenol A compounds from water, pubs, 19th July 2017.
  • Feature image credit Leland Francisco.