A complete and comprehensive ban on fracking is needed to mitigate its grave harm to public health and the climate

Compendium of Scientific, Medical, and Media Findings Demonstrating Risks and Harms of Fracking (Unconventional Gas and Oil Extraction), Sixth Edition, June 19, 2019

A group of doctors and scientists have released a comprehensive report highlighting that 84 percent of studies published from 2009-2015 on the health impacts of fracking conclude the industry causes harm to human health, Environmental Health News reports.
Concerned Health Professionals of New York compendium.

Abstract

Conclusion

All together, findings to date from scientific, medical, and journalistic investigations combine to demonstrate that fracking poses significant threats to air, water, human health, public safety, community cohesion, long-term economic vitality, biodiversity, seismic stability, and climate stability.

The rapidly expanding body of scientific evidence compiled and referenced in the present volume is massive, troubling, and cries out for decisive action. Across a wide range of parameters, from air and water pollution to radioactivity to social disruption to greenhouse gas emissions, the data continue to reveal a plethora of recurring problems and harms that cannot be sufficiently averted through regulatory frameworks.There is no evidence that fracking can operate without threatening public health directly and without imperiling climate stability upon which public health depends. The only method of mitigating its grave harm to public health and the climate is a complete and comprehensive ban on fracking.

In the words of investigative journalist Andrew Nikiforuk:

Industry swore that its cracking rock technology was safe and proven, but science now tells a different story. Brute force combined with ignorance … has authored thousands of earthquakes … [and] called forth clouds of migrating methane…. The science is complicated but clear: cracking rock with fluids is a chaotic activity and no computer model can predict where those fractures will go. The regulatory record shows that they often go out of zone; extend into water; and rattle existing oil and gas wells, and these rattled wells are leaking more methane.

In closing, we cite comments by epidemiologist Irena Gorski, co-author of the 2019 review of fracking’s health concerns published in the Oxford Research Encyclopedia of Global Public Health. Her words speak for all who have contributed to this Compendium:

What we found pushes back against the narrative we often hear that say we don’t know enough about the health impacts yet. We have enough evidence at this point that these health impacts should be of serious concern to policymakers interested in protecting public health….As a fossil fuel, natural gas extraction and use is contributing to climate change, of course. But before conducting this study, I didn’t realize the amount of evidence we have that it may be even worse than coal. We included this in our study because climate change has its own contributions to health impacts. These indirect impacts will take longer to appear than the direct health impacts, but they have the potential to be significant.

Pennsylvania residents are bearing more than 80 percent of fracking waste

Temporal and spatial trends of conventional and unconventional oil and gas waste management in Pennsylvania, 1991–2017

More than 80 percent of all waste from Pennsylvania’s oil and gas drilling operations stays inside the state, according to a new study that tracked the disposal locations of liquid and solid waste from these operations over 26 years, ehn reports.

Highlights

  • Majority of Pennsylvania oil & gas (O&G) wastewater is disposed of in-state.
  • Final disposal endpoints are often not reported in the PADEP waste inventory.
  • 30% of O&G wastewater generated since 1991 is from conventional development.
  • The majority of wastewater is currently handled by in-field reuse (52% in 2017).
  • Spatial data available for 99% of UOG and 45% of COG wastewater in 2017.

Abstract

The significant development of oil and gas from the Marcellus Shale and other geological formations in Pennsylvania over the last decade has generated large volumes of liquid and solid waste. In this paper we use data reported to the Pennsylvania Department of Environmental Protection (PADEP) to examine temporal and spatial trends in generation and management of liquid and solid waste from both conventional and unconventional oil and gas activities in Pennsylvania between 1991 and 2017. While previous assessments have examined this waste inventory in part, no complete assessment of waste quantity, waste types, waste handling practices, and spatial waste tracking has been undertaken using all currently available years of Pennsylvania oil and gas waste data. In 2017 more than half of oil and gas wastewater by volume was reused at well pads to facilitate more hydrocarbon production while the majority of solid waste by volume was disposed of at in-state landfills. The spatial resolution of wastewater generation and handling from unconventional operations has improved substantially with recent regulations and reporting requirements; however, conventional oil and gas development was not held to more stringent reporting requirements and thus spatially-explicit data on wastewater generation and handling from conventional oil and gas development is still lacking. In addition, a third of the liquid waste across all years in the inventory lack a reported final destination. Spatially explicit cradle-to-grave reporting of waste generation and waste handling from both conventional and unconventional oil and gas development is critical to assess potential environmental and human health hazards and risks associated with oil and gas development.

Glyphosate could be altering the wildlife and organisms at the base of the food chain

Glyphosate impairs learning in mosquito larvae (Aedes aegypti) at field-realistic doses

Glyphosate-based herbicides are not supposed to harm wildlife. But lab studies – such as this – keep finding otherwise…

What’s the world’s most widely used herbicide doing to tiny critters? asks Environmental Health News. Image Darron Birgenheier.

2019 Study Abstract

Glyphosate is the most widely used herbicide in the world. In the last years, the number of studies revealing deleterious effects of glyphosate on non-target species has been increasing. We studied the impact of glyphosate at field-realistic doses on learning in mosquito larvae (Aedes aegypti). Larvae of A. aegypti live in small water bodies and perform a stereotyped escape response when a moving object projects its shadow on the water surface. Repeated presentations of an innocuous visual stimulus induce a decrease in response due to habituation, a non-associative form of learning. In this study, different groups of larvae were reared in water containing different concentrations of glyphosate that can be found in the field (50 µg/l, 100 µg/l, 210 µg/l and 2 mg/l). Larvae reared in a glyphosate solution of 2 mg/l could complete their development. However, glyphosate impaired habituation. The higher the dose, the stronger the deleterious effects on learning abilities. This protocol opens new avenues to further studies aiming at understanding how glyphosate affects non-target organisms as insects. Habituation in mosquito larvae could serve as a parameter for testing the impact of pollutants in water bodies.

40 years after exposure, Pesticide linked to higher breast cancer risk

DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows

According to a recent study, DDT exposure before puberty may have increased the breast cancer risk for women in their 50s. Study is the latest to suggest early-life exposures, even prior to birth, may hold the key to understanding who gets diseases, Environmental Health News reports.

2019 Study Abstract

Background
In a previous Child Health and Development Studies report, p, p’-DDT was associated with a fivefold increased risk of premenopausal (before age 50 years) breast cancer for women first exposed before puberty. Here we extend our observation to breast cancer diagnosed during early postmenopause (ages 50–54 years) to determine whether age at diagnosis modifies the interaction of DDT with age at exposure.

Methods
We conducted a second prospective, nested case-control study in the Child Health and Development Studies (153 incident breast cancer cases diagnosed at ages 50–54 years and 432 controls matched to cases on birth year). These were analyzed separately and pooled with our previous study (129 breast cancer cases diagnosed at ages 31–49 years and 129 controls matched on birth year). Blood samples were obtained during pregnancy (median age, 26 years), 1–3 days after delivery from 1959 to 1967 in Oakland, California. Serum was assayed for p, p’-DDT, o, p’-DDT, and p, p’-DDE. Odds ratios (ORs) below are given for doubling of serum p, p’-DDT. All statistical tests were two-sided.

Results
For early postmenopausal breast cancer, p, p’-DDT was associated with risk for all women (ORDDT 50–54 = 1.99, 95% CI = 1.48 to 2.67). This association was accounted for by women first exposed to DDT after infancy (ORDDT 50–54 for first exposure after infancy = 2.83, 95% CI = 1.96 to 4.10 vs ORDDT 50–54 for first exposure during infancy = 0.56, 95% CI = 0.26 to 1.19; Pinteraction DDT x age at first exposure = .01). In contrast, for premenopausal breast cancer, p, p’-DDT was associated with risk among women first exposed during infancy through puberty, but not after (ORDDT<50 for first exposure during infancy = 3.70, 95% CI = 1.22 to 11.26, Pinteraction DDT x age at first exposure x age at diagnosis = .03).

Conclusions
p, p’-DDT was associated with breast cancer through age 54 years. Risk depended on timing of first exposure and diagnosis age, suggesting susceptibility windows and an induction period beginning in early life. DDT appears to be an endocrine disruptor with responsive breast targets from in utero to menopause.

Fracking linked to increased hospitalizations for skin, genital and urinary issues

Unconventional natural gas development and hospitalizations: evidence from Pennsylvania, United States, 2003–2014

According to a new study, rashes, urinary tract infections, and kidney stones requiring hospital stays are more common in areas with more drilling, Environmental Health News reports.

Highlights

  • Long-term exposure to unconventional drilling may be harmful to population health.
  • Genitourinary and skin-related hospitalization rates increase with drilling.
  • Healthcare professionals should encourage exposed individuals to seek care early.
  • Research into the causal mechanisms is warranted.

Abstract

Objectives
To examine relationships between short-term and long-term exposures to unconventional natural gas development, commonly known as fracking, and county hospitalization rates for a variety of broad disease categories.

Study design
This is an ecological study based on county-level data for Pennsylvania, United States, 2003–2014.

Methods
We estimated multivariate regressions with county and year fixed effects, using two 12-year panels: all 67 Pennsylvania counties and 54 counties that are not large metropolitan.

Results
After correcting for multiple comparisons, we found a positive association of cumulative well density (per km2) with genitourinary hospitalization rates. When large metropolitan counties were excluded, this relationship persisted, and positive associations of skin-related hospitalization rates with cumulative well count and well density were observed. The association with genitourinary hospitalization rates is driven by females in 20–64 years group, particularly for kidney infections, calculus of ureter, and urinary tract infection. Contemporaneous wells drilled were not significantly associated with hospitalizations after adjustment for multiple comparisons.

Conclusions
Our study shows that long-term exposure to unconventional gas development may have an impact on prevalence of hospitalizations for certain diseases in the affected populations and identifies areas of future research on unconventional gas development and health.

What are you putting on your baby? Or on your genitals?

Sanitary pads and diapers contain higher phthalate contents than those in common commercial plastic products

2019 Study Highlights

  • Three VOCs and 4 phthalates were measured in commercial sanitary pads and diapers.
  • Air in the packages of sanitary pads and diapers contained as high as 5.9 ppb of VOCs.
  • Sanitary pads and diapers contained as high as 8,014.9 ppb of phthalates.
  • VOCs and phthalates contained in the commercial products considerably vary among the brands.

Abstract

Sanitary pads and diapers are made of synthetic plastic materials that can potentially be released while being used. This study measured the amounts of volatile organic compounds (VOCs) (methylene chloride, toluene, and xylene) and phthalates (DBP, DEHP, DEP, and BBP) contained in sanitary pads and diapers. In sanitary pads, 5,900- and 130-fold differences of VOC and phthalate concentrations were seen among the brands. In the diapers, 3- and 63-fold differences of VOC and phthalate concentrations were detected among the brands. VOC concentrations from the sanitary pads and diapers were similar to that of the residential air. However, phthalate concentrations of sanitary pads and diapers were significantly higher than those found in common commercial plastic products. As sanitary pads and diapers are in direct contact with external genitalia for an extended period, there is a probability that a considerable amount of VOCs or phthalates could be absorbed into the reproductive system.

 

Fracking chemicals entering the food chain

Accumulation of Marcellus Formation Oil and Gas Wastewater Metals in Freshwater Mussel Shells

Radioactive fracking chemicals dumped in the Allegheny River a decade ago are still showing up in mussels, Environmental Health News
reports. Chemicals from fracking wastewater dumped into Pennsylvania’s Allegheny River before 2011 are still accumulating in the bodies of freshwater mussels downstream, according to a new study.

Abstract

For several decades, high-salinity water brought to the surface during oil and gas (O&G) production has been treated and discharged to waterways under National Pollutant Discharge Elimination System (NPDES) permits.

In Pennsylvania, USA, a portion of the treated O&G wastewater discharged to streams from 2008 to 2011 originated from unconventional (Marcellus) wells.

We collected freshwater mussels, Elliptio dilatata and Elliptio complanata, both upstream and downstream of a NPDES-permitted facility, and for comparison, we also collected mussels from the Juniata and Delaware Rivers that have no reported O&G discharge.

We observed changes in both the Sr/Cashell and 87Sr/86Srshell in shell samples collected downstream of the facility that corresponded to the time period of greatest Marcellus wastewater disposal (2009–2011). Importantly, the changes in Sr/Cashell and 87Sr/86Srshell shifted toward values characteristic of O&G wastewater produced from the Marcellus Formation. Conversely, shells collected upstream of the discharge and from waterways without treatment facilities showed lower variability and no trend in either Sr/Cashell or 87Sr/86Srshell with time (2008–2015).

These findings suggest that

  1. freshwater mussels may be used to monitor changes in water chemistry through time and help identify specific pollutant sources
  2. and O&G contaminants likely bioaccumulated in areas of surface water disposal.

How (living) close to a fracking site is too close (to residents for safety) ?

Setback distances for unconventional oil and gas development: Delphi study results

Regulations on how close fracking facilities can be to buildings and homes in Pennsylvania are too lax to adequately protect public health, according to a new study.

To protect public health, a panel of experts recommends more than doubling the required distance between frack wells and homes, Environmental Health News reports, Aug 23, 2018.

Abstract

Emerging evidence indicates that proximity to unconventional oil and gas development (UOGD) is associated with health outcomes. There is intense debate about “How close is too close?” for maintaining public health and safety.

The goal of this Delphi study was to elicit expert consensus on appropriate setback distances for UOGD from human activity.

Three rounds were used to identify and seek consensus on recommended setback distances. The 18 panelists were health care providers, public health practitioners, environmental advocates, and researchers/scientists. Consensus was defined as agreement of ≥70% of panelists.

  1. Content analysis of responses to Round 1 questions revealed four categories:
    1. recommend setback distances;
    2. do not recommend setback distances;
    3. recommend additional setback distances for vulnerable populations;
    4. do not recommend additional setback distances for vulnerable populations.
  2. In Round 2, panelists indicated their level of agreement with the statements in each category using a five-point Likert scale.
  3. Based on emerging consensus, statements within each category were collapsed into seven statements for Round 3:
    • recommend set back distances of <¼ mile;
    • ¼—½ mile;
    • 1–1 ¼ mile;
    • and ≥ 2 mile;
    • not feasible to recommend setback distances;
    • recommend additional setbacks for vulnerable groups;
    • not feasible to recommend additional setbacks for vulnerable groups.

The panel reached consensus that setbacks of < ¼ mile should not be recommended and additional setbacks for vulnerable populations should be recommended. The panel did not reach consensus on recommendations for setbacks between ¼ and 2 miles.

The results suggest that if setbacks are used the distances should be greater than ¼ of a mile from human activity, and that additional setbacks should be used for settings where vulnerable groups are found, including schools, daycare centers, and hospitals. The lack of consensus on setback distances between 1/4 and 2 miles reflects the limited health and exposure studies and need to better define exposures and track health.

Stress and depression higher among people living near fracking sites

Associations of unconventional natural gas development with depression symptoms and disordered sleep in Pennsylvania

People who live near unconventional natural gas operations such as fracking are more likely to experience depression, Environmental Health News reports.
Featured image credit frackfreeryedale.org.

Abstract

Environmental and community factors may influence the development or course of depression and sleep problems.

In this study, we evaluated the association of unconventional natural gas development (UNGD) with depression symptoms and disordered sleep diagnoses using the Patient Health Questionnaire-8 and electronic health record data among Geisinger adult primary care patients in Pennsylvania.
Participants received a retrospective metric for UNGD at their residence (very low, low, medium, and high) that incorporated dates and durations of well development, distance from patient homes to wells, and well characteristics.

Analyses included 4,762 participants with no (62%), mild (23%), moderate (10%), and moderately severe or severe (5%) depression symptoms in 2014–2015 and 3,868 disordered sleep diagnoses between 2009–2015. We observed associations between living closer to more and bigger wells and depression symptoms, but not disordered sleep diagnoses in models weighted to account for sampling design and participation.

High UNGD (vs. very low) was associated with depression symptoms in an adjusted negative binomial model (exponentiated coefficient = 1.18, 95% confidence interval [CI]: 1.04–1.34). High and low UNGD (vs. very low) were associated with depression symptoms (vs. none) in an adjusted multinomial logistic model.

Our findings suggest that UNGD may be associated with adverse mental health in Pennsylvania.

Link between fracking chemicals and immune system problems

Developmental Exposure to a Mixture of 23 Chemicals Associated With Unconventional Oil and Gas Operations Alters the Immune System of Mice

Chemicals commonly found in groundwater near fracked oil and gas wells appear to impair the proper functioning of the immune system, Environmental Health News reports.

The new study suggests that baby girls born to mothers near fracking wells may not fight diseases later in life as well as they could have with a pollution-free pregnancy.

2018 Study Abstract

Chemicals used in unconventional oil and gas (UOG) operations have the potential to cause adverse biological effects, but this has not been thoroughly evaluated. A notable knowledge gap is their impact on development and function of the immune system.

Herein, we report an investigation of whether developmental exposure to a mixture of chemicals associated with UOG operations affects the development and function of the immune system. We used a previously characterized mixture of 23 chemicals associated with UOG, and which was demonstrated to affect reproductive and developmental endpoints in mice. C57Bl/6 mice were maintained throughout pregnancy and during lactation on water containing two concentrations of this 23-chemical mixture, and the immune system of male and female adult offspring was assessed. We comprehensively examined the cellularity of primary and secondary immune organs, and used three different disease models to probe potential immune effects: house dust mite-induced allergic airway disease, influenza A virus infection, and experimental autoimmune encephalomyelitis (EAE). In all three disease models, developmental exposure altered frequencies of certain T cell sub-populations in female, but not male, offspring. Additionally, in the EAE model disease onset occurred earlier and was more severe in females.

Our findings indicate that developmental exposure to this mixture had persistent immunological effects that differed by sex, and exacerbated responses in an experimental model of autoimmune encephalitis. These observations suggest that developmental exposure to complex mixtures of water contaminants, such as those derived from UOG operations, could contribute to immune dysregulation and disease later in life.