Endocrine disruptors have an impact on reproduction for several generations

Endocrine disruptors transgenerationally alters pubertal timing through epigenetic reprogramming of the hypothalamus

2019 Study Abstract

Endocrine disruptors are a rising concern for public health due to their ubiquitous presence affecting reproductive development throughout generations.

We aim at studying the transgenerational effect of an EDC mixture on female sexual development and reproduction.

Female rats (F0 generation) were orally exposed to a mixture of 14 anti-androgenic and estrogenic EDCs or corn oil for 2 weeks before and throughout gestation and until weaning. The mixture was composed of plasticizers (BPA, DBP, DEHP), fungicides/pesticides (Vinclozolin, Procymidon, Prochloraz, Epoxynazole, Linurone, p-p’-DDT), UV filters (4-MBC, OMC), Butylparaben and the analgesic Acetaminophen. Doses were in the human exposure range (μg/kg).

Sexual development and reproductive parameters (vaginal opening, GnRH secretion, estrous cyclicity and folliculogenesis) were studied from F1 to F3 generations. Maternal behavior was measured from F0 to F2 generations. At PND21, mediobasal hypothalamus of the F1 and F3 were removed for gene expression analysis (RNAseq, RT-PCR) as well as for Chromatin Immunoprecipitation of histone modifications at regulatory regions of target genes.

The results show multiple multi- and transgenerational effects after ancestral EDC exposure. While F2 and F3 females showed delayed vaginal opening, decreased percentage of regular estrous cycles, decreased GnRH interpulse interval and altered folliculogenesis, no such changes were detected in F1 animals. These alterations were accompanied with transcriptional and histone posttranslational modifications of key hypothalamic genes involved in puberty and reproduction. We observed a downregulation of estrogen signaling (Esr1), genes involved in the GnRH network (Kisspeptin, Grin2d, Tac3R), maternal behavior (Th, Oxt, Avp, Drd1, Drd2) and stress responsiveness (Nr3c1). Upregulated gens involved glucocorticoid activity (Crh) and metabolism (Pomc, Cart). Concomitantly with transcriptional levels, while downregulated genes present higher levels of repressive histone marks (H3K9me3, H3K27me3) and decreased levels of activational histone marks (H3K4me3, H3K9ac), upregulated genes present the opposite pattern. Such histone marks related to changes in the polycomb/thritorax group of protein balance, involved in the control of female puberty. F1 and F2 females displayed decreased licking while spending more time resting alone. F1 RNAseq showed a reduction in Th, Drd1 and Drd2 mRNA expression. These alterations on maternal behavior are known to cause transgenerational alterations of the development of the corticotropic and gonadotropic axis.

In conclusion, exposure to an environmentally relevant EDC mixture transgenerationally affects sexual development and reproduction throughout epigenetic reprogramming of the hypothalamus. While not yet clear, such effects could be mediated by alterations of maternal behavior caused by exposure to the first generation.

ReferenceImage.

DES and the GENES

Nearly half of (Italian) playgrounds tested contaminated by pesticide(s)

Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards

2019 Study Abstract

Background
Pesticide levels are generally monitored within agricultural areas, but are commonly not assessed at public places. To assess possible contamination of non-target areas, 71 public playgrounds located next to intensively managed apple and wine orchards were selected in four valleys of South Tyrol (northern Italy). Further, the impact of environmental site characteristics on the number and concentration of pesticides was assessed. Grass samples from the selected playgrounds were collected and screened for 315 pesticide residues using standard gas chromatography and mass spectrometry.

Results
Nearly half of the playgrounds (45%) were contaminated by at least one pesticide and a quarter (24%) by more than one. Eleven of the 12 different detected pesticides are classified as endocrine-active substances including the insecticide phosmet and the fungicide fluazinam showing the highest concentrations (0.069 and 0.26 mg kg−1, respectively). Additionally, one disinfectant and one preservation agent was found. Playgrounds in Venosta valley were most often contaminated (76% of all investigated playgrounds), highest concentrations were found in the Low Adige (2.02 mg kg−1). Pesticide concentrations were positively associated with areal proportion of apple orchards in the surroundings, the amount of rainfall and wind speed. In contrast, increasing global irradiance, opposite wind direction, increasing distance to agricultural sites and high wind speeds when pesticide application was not allowed were associated with decreasing pesticide contamination.

Conclusion
This study is among the first investigating pesticide contamination of public playgrounds together with environmental factors in areas with pesticide-intensive agriculture at the beginning of the growing season. It is likely that playgrounds will be affected by more pesticides and higher concentrations over the course of the crop season. The result, that the majority of the detected pesticides are classified as endocrine active is worrisome as children are especially vulnerable. Hence, we recommend that pesticide risk assessments should better include protection measures for non-target areas.
Image Antonio Thomás Koenigkam Oliveira.

PFCs chemicals impact young men fertility, Endocrine Society reports

Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence, 2019

Perfluoroalkyl compounds (PFCs) are a class of organic molecules that are used in many everyday products such as oil and water repellents, coatings for cookware, carpets, and textiles.

The crucial emerging role of PFCs as pollutants of water, soil, and air and their persistent level in males warrant for more investigation on the mechanisms of PFC toxicity in humans.

There is a new reason to be concerned about toxic chemicals used in nonstick pans, waterproof products, and firefighting foam: PFCs impair male reproductive health, according to a recent study, the intercept reports.

Abstract

Background
Considerable attention has been paid to perfluoroalkyl compounds (PFCs) because of their worldwide presence in humans, wildlife, and environment. A wide variety of toxicological effects is well supported in animals, including testicular toxicity and male infertility. For these reasons, the understanding of epidemiological associations and of the molecular mechanisms involved in the endocrine-disrupting properties of PFCs on human reproductive health is a major concern.

Objective
To investigate the relationship between PFC exposure and male reproductive health.

Design
This study was performed within a screening protocol to evaluate male reproductive health in high schools.

Patients
This is a cross-sectional study on 212 exposed males from the Veneto region, one of the four areas worldwide heavily polluted with PFCs, and 171 nonexposed controls.

Main Outcome Measures
Anthropometrics, seminal parameters, and sex hormones were measured in young males from exposed areas compared with age-matched controls. We also performed biochemical studies in established experimental models.

Results
We found that increased levels of PFCs in plasma and seminal fluid positively correlate with circulating testosterone (T) and with a reduction of semen quality, testicular volume, penile length, and anogenital distance. Experimental evidence points toward an antagonistic action of perfluorooctanoic acid on the binding of T to androgen receptor (AR) in a gene reporter assay, a competition assay on an AR-coated surface plasmon resonance chip, and an AR nuclear translocation assay.

Discussion
This study documents that PFCs have a substantial impact on human health as they interfere with hormonal pathways, potentially leading to male infertility.

EU Parliament calling for the EU Commission to stop dithering and start acting on endocrine disruption

Endocrine disruptors drop the curtain on this European Parliament

On Thursday (18 April), the European Parliament adopted a non-binding resolution asking the European Commission to ensure a higher level of protection against endocrine disruptors (EDCs) by making a legislative proposal on the matter no later than June 2020.

It passed with 447 votes in favour, 14 against and 41 abstentions, and was actually the last text to be dealt with by this Parliament.

MEPs proposed treating EDCs or potential EDCs on an equal footing with substances classified as carcinogenic, mutagenic or toxic for reproduction, the so-called CMR substances prohibited in EU cosmetics legislation.

EDCs are a class of chemicals commonly found throughout our environment in children’s products, food containers, personal care products, pesticides and furniture. These hazardous substances alter the functioning of the hormonal system, having a negative effect on the health of humans and animals.

Close to 800 chemicals are known or suspected to be capable of interfering with hormone receptors, hormone synthesis or hormone conversion, according to a report drafted in 2012 by the United Nations Environment Programme (UNEP) and the World Health Organisation (WHO).

The EU started discussing the issue as early as 1996 and recognised EDCs as a health and environmental hazard in its “Community Strategy for endocrine disruptors” adopted by the Commission in December 1999.

The EU executive revamped interest in the topic last November publishing a new strategy for endocrine disruptors and launching a comprehensive screening of the legislation applicable to EDCs through a fitness check.

According to the lawmakers, the response is so far not adequate to the health threat, as the EU framework for EDCs suggested by the Commission in November lacks both a concrete action plan to minimise exposure to EDCs and a timeline for the next steps to move forward.

Plenary debate

Representing the EU executive before the plenary, Violeta Bulc defended the EU efforts:

“We can be proud of the progress we have achieved since there, we are recognised as one of the global leaders in dealing with these substances.”

“However, this is not enough: EDCs remain today a global challenge and a source of concern for many citizens,”

she said.

She added that the Commission adopted its communication in November in order to step up the EU approach and that the cross-cutting fitness check should be finalised in the first half of 2020, followed by a 12-week-long public consultation.

Before the end of the year, the Commission will also organise the first annual meeting of stakeholders and the launch of a new web portal, as part of the comprehensive set of actions to achieve the objectives included in the communication.

Although the resolution was backed by all the political groups within the Parliament, the European People’s Party (EPP) criticised a sort of “ideological hysteria” on EDCs and, in particular, the attempt of putting on the same level suspected and proven EDCs.

“This goes too far, goes too quickly and it’s not based on scientific evidence,”

said centre-right British MEP Julie Girling.

Green and liberal lawmakers strongly criticised the definition of EDCs included in the Commission strategy, as it seems to apply only to pesticides and other plant production products.

“Now we know that 80% of exposure comes through the food, so EDCs should be banned in all of the materials in contact with food but also in cosmetics and toys,”

said Belgian liberal Frédérique Ries.

Strong political signal

EURACTIV asked Prof. Barbara Demeneix, chair of Endocrine-Disrupting Chemicals Task Force at Endocrine Society and among the authors of a scientific report on EDCs commissioned by the Parliament’s PETI committee published last March, for her thoughts.

She hailed the call to take concrete action to regulate endocrine disruptors, which are so prevalent in our daily lives.

According to the scientist, the Parliament has sent a strong political signal to both European ministers and the Commission with the adoption of this resolution by a clear cross-party consensus.

“Their call for clear and prompt EU actions is fully justified by the available science-based evidence of increasing damage to public health and it can no longer be ignored by the EU and other countries,”

Demeneix said.

Asked about the Perfluoroalkylated substances (PFAS), she said that the topic is particularly worrying, as several thousand of them exist and only a couple are banned.

“The fact that these substances interfere with thyroid hormone homeostasis and affect immune responses is clearly demonstrated, both by epidemiology and laboratory tests,”

she concluded.

Reference.

Glyphosate could be altering the wildlife and organisms at the base of the food chain

Glyphosate impairs learning in mosquito larvae (Aedes aegypti) at field-realistic doses

Glyphosate-based herbicides are not supposed to harm wildlife. But lab studies – such as this – keep finding otherwise…

What’s the world’s most widely used herbicide doing to tiny critters? asks Environmental Health News. Image Darron Birgenheier.

2019 Study Abstract

Glyphosate is the most widely used herbicide in the world. In the last years, the number of studies revealing deleterious effects of glyphosate on non-target species has been increasing. We studied the impact of glyphosate at field-realistic doses on learning in mosquito larvae (Aedes aegypti). Larvae of A. aegypti live in small water bodies and perform a stereotyped escape response when a moving object projects its shadow on the water surface. Repeated presentations of an innocuous visual stimulus induce a decrease in response due to habituation, a non-associative form of learning. In this study, different groups of larvae were reared in water containing different concentrations of glyphosate that can be found in the field (50 µg/l, 100 µg/l, 210 µg/l and 2 mg/l). Larvae reared in a glyphosate solution of 2 mg/l could complete their development. However, glyphosate impaired habituation. The higher the dose, the stronger the deleterious effects on learning abilities. This protocol opens new avenues to further studies aiming at understanding how glyphosate affects non-target organisms as insects. Habituation in mosquito larvae could serve as a parameter for testing the impact of pollutants in water bodies.

Endocrine Disruptors : from Scientific Evidence to Human Health Protection

The European Parliament publishes new report on endocrine disrupting chemicals, 2019

The European Society of Endocrinology welcomes the new European Parliament report on Endocrine Disrupting Chemicals (EDCs) written by Prof Barbara Demeneix of the Muséum National d’Histoire Naturelle in Paris, France and member of the ESE EDC Working Group and Dr Rémy Slama, INSERM (National Institute of Health and Medical Research), Grenoble, France.

Abstracts

Presentation

This study, commissioned by the PETI Committee of the European Parliament, presents the scientific knowledge regarding the health effects of endocrine disruptors, a class of hazards recognized in EU regulation since 1999. This report reviews the scientific evidence regarding the concept of endocrine disruption, the extent of exposure, associated health effects and costs. The existing relevant EU regulations are discussed and recommendations made to better protect human health.

1.1.2 The drug diethylstilboestrol (DES)

DES was developed as a synthetic oestrogen. It was prescribed from the 1940s onwards. Prescriptions were based on the erroneous assumption that it could prevent miscarriage and other pregnancy complications, which was shown to be wrong in 1953. In 1971, the USA Food and Drug Administration (FDA) advised against its use due to vaginal cancers occurrence in girls born to mothers who had used DES, while this cancer usually develops post-menopause. DES was banned in the Netherlands in 1975 and in France and Spain in 1977. Women who took DES have a slightly higher risk of breast cancer, but the most striking effects are seen on offspring exposed during pregnancy. Epidemiology shows in utero DES exposure to be linked not only to vaginal cancer in daughters of exposed women, but also to reproductive tract disorders, infertility and higher rates of spontaneous abortion. Sons display higher rates of genital abnormalities, and increased risks of prostate cancer; in addition, an increased risk of testicular cancer has been suggested. Importantly, effects such as increased risk of malformations of the male genitalia and possibly attention deficit and hyperactivity disorders (ADHD) are also observed in the grandchildren of DES-prescribed women.

In contrast to DDT, which is persistent in the body, DES is quickly eliminated, showing that chemicals can exert effects long after they disappeared from the organism, possibly on successive generations. There are biological mechanisms whereby the organism could keep a memory of exposure. One possibility relates to adverse effects that can be traced to epigenetic modifications. Work on animal models shows that certain DES impacts could result from epigenetic effects on the germ cells (the sperm and egg cells) forming in the in utero DES exposed foetuses).

Both DDT and DES provide examples of compounds able to interact with the endocrine system in humans or wildlife species (DES was designed to mimic a natural hormone, oestrogen; DDT and its metabolites were found to alter hormone production, mimic oestrogen and block androgen actions) and to cause adverse effects. They resonate with a concept developed in 1.7 and 1.9: the Developmental origin of Health and Disease (DOHaD), underlining foetal life as a determinant factor for child and adult health.

The scientific report, commissioned by the Parliament’s Committee on Petitions, provides an excellent overview of the severe threat EDCs pose for EU society and highlights the many shortcomings of current EU policies and legislation. Amongst the many proposed regulatory measures, it urges the European Union to rapidly develop a set of trans-sectorial and harmonised regulations to minimise human and environmental exposure to EDCs. As discussed in the report, based on an extensive literature review, EDCs or suspected EDCs are currently present in all media (water, diet, food contact materials, cosmetics…) and most EU citizens have dozens of (suspected) EDCs in their bodies.

In addition to improved regulatory measures, the report stresses the importance of speeding up test development to effectively identify EDCs and calls for additional research to address the many knowledge gaps in this relatively new scientific area.

These calls for additional regulation and research at the EU level are in line with a recent ESE Statement in response to the disappointing European Commission Communication on EDCs from 7 November 2018, which in ESE’s view lacks ambition to effectively tackle the many challenges in this area.

DES DiEthylStilbestrol Resources

Glyphosate-exposed shows a change in intestinal flora, study

The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome

A study published on May 2018 by an international consortium of researchers, shows a change in intestinal flora in exposed animals, compared to control group. Image credit telegraph.

2019 Study Abstract

Background
Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be “safe” (the US Acceptable Daily Intake – ADI – of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats.

Methods
Glyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis.

Results
Microbiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls.

Conclusions
This study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood.

Glyphosate suspected to be an endocrine disruptor

The Ramazzini Institute 13-week pilot study glyphosate-based herbicides administered at human-equivalent dose to Sprague Dawley rats: effects on development and endocrine system

A new study, published on March 12 2019 by an international consortium of researchers, adds a new controversy about this product already suspected of being genotoxic or carcinogenic. Image credit republic.ru.

2019 Study Abstract

Background
Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including potential effects on the endocrine system The present pilot study examine whether exposure to GBHs at the dose of glyphosate considered to be “safe” (the US Acceptable Daily Intake – ADI – of 1.75 mg/kg bw/day), starting from in utero life, affect the development and endocrine system across different life stages in Sprague Dawley (SD) rats.

Methods
Glyphosate alone and Roundup Bioflow, a commercial brand of GBHs, were administered in drinking water at 1.75 mg/kg bw/day to F0 dams starting from the gestational day (GD) 6 (in utero) up to postnatal day (PND) 120. After weaning, offspring were randomly distributed in two cohorts: 8 M + 8F/group animals belonging to the 6-week cohort were sacrificed after puberty at PND 73 ± 2; 10 M + 10F/group animals belonging to the 13-week cohort were sacrificed at adulthood at PND 125 ± 2. Effects of glyphosate or Roundup exposure were assessed on developmental landmarks and sexual characteristics of pups.

Results
In pups, anogenital distance (AGD) at PND 4 was statistically significantly increased both in Roundup-treated males and females and in glyphosate-treated males. Age at first estrous (FE) was significantly delayed in the Roundup-exposed group and serum testosterone concentration significantly increased in Roundup-treated female offspring from the 13-week cohort compared to control animals. A statistically significant increase in plasma TSH concentration was observed in glyphosate-treated males compared with control animals as well as a statistically significant decrease in DHT and increase in BDNF in Roundup-treated males. Hormonal status imbalances were more pronounced in Roundup-treated rats after prolonged exposure.

Conclusions
The present pilot study demonstrate that GBHs exposure, from prenatal period to adulthood, induced endocrine effects and altered reproductive developmental parameters in male and female SD rats. In particular, it was associated with androgen-like effects, including a statistically significant increase of AGDs in both males and females, delay of FE and increased testosterone in female.

55 unique chemical compounds used for fracking are known as probable or possible human carcinogens

Unconventional oil and gas development and risk of childhood leukemia: Assessing the evidence

2017 Study Highlights

  • Concerns exist about carcinogenic effects of unconventional oil & gas development.
  • We evaluated the carcinogenicity of 1177 water pollutants and 143 air pollutants.
  • These chemicals included 55 known, probable, or possible human carcinogens.
  • Specifically, 20 compounds had evidence of leukemia/lymphoma risk.
  • Research on exposures to unconventional oil & gas development and cancer is needed.

Abstract

The widespread distribution of unconventional oil and gas (UO&G) wells and other facilities in the United States potentially exposes millions of people to air and water pollutants, including known or suspected carcinogens. Childhood leukemia is a particular concern because of the disease severity, vulnerable population, and short disease latency. A comprehensive review of carcinogens and leukemogens associated with UO&G development is not available and could inform future exposure monitoring studies and human health assessments.

The objective of this analysis was to assess the evidence of carcinogenicity of water contaminants and air pollutants related to UO&G development.

We obtained a list of 1177 chemicals in hydraulic fracturing fluids and wastewater from the U.S. Environmental Protection Agency and constructed a list of 143 UO&G-related air pollutants through a review of scientific papers published through 2015 using PubMed and ProQuest databases.

We assessed carcinogenicity and evidence of increased risk for leukemia/lymphoma of these chemicals using International Agency for Research on Cancer (IARC) monographs.

The majority of compounds (> 80%) were not evaluated by IARC and therefore could not be reviewed. Of the 111 potential water contaminants and 29 potential air pollutants evaluated by IARC (119 unique compounds), 49 water and 20 air pollutants were known, probable, or possible human carcinogens (55 unique compounds). A total of 17 water and 11 air pollutants (20 unique compounds) had evidence of increased risk for leukemia/lymphoma, including benzene, 1,3-butadiene, cadmium, diesel exhaust, and several polycyclic aromatic hydrocarbons.

Though information on the carcinogenicity of compounds associated with UO&G development was limited, our assessment identified 20 known or suspected carcinogens that could be measured in future studies to advance exposure and risk assessments of cancer-causing agents.

Our findings support the need for investigation into the relationship between UO&G development and risk of cancer in general and childhood leukemia in particular.

Evidence that Pesticide Active Substances are Transported Through Air

New study results prove a significant transport of pesticides over distances of many kilometres up to remote side valleys

Gone with the wind

Measurement of pesticides in the air in Vinschgau in 2018

Task

If pesticides are used in agriculture, they never end up in their target location one hundred percent. A part remains in the ground, reaches waters or is carried away through the air by wind and thermals. In orchards, characteristic for the landscape of the Vinschgau Valley in Italy‘s German speaking province South Tyrol, this transport of particles through the air is a particularly serious problem as the spraying isn’t only done from top to bottom, but also sideways into the trees.

The aim of the study was to measure this effect to

  • provide evidence that pesticide active substances are transported through air
  • trace the spatial distribution of the various active substances
  • trace the temporal distribution of the various active substances during one growing season.

Method

Two passive collectors (TE-200-PAS) produced by the company Tisch Environment were set up at each of the four locations with very different exposure scenarios and fitted with matching disks of polyurethane foam. The material is characterised by a large internal surface on which volatilised organic pollutants can adsorb.

This method was developed in the Canadian Ministry of Environment and has been used worldwide for many years, for example in the Global Atmospheric Passive Sampling Network. The use of the standardised collection medium enables a comparison between the pollution of the locations with an active substance when compared to each other and over a course of time.

The disks were purified in a laboratory before use to prevent pollutants from distorting the results. They were replaced every three weeks and sent to a laboratory for analysis in cooling boxes by express delivery. There they were extracted with methanol and the eluate was analysed for a total of 29 pesticide active substances that would probably be used in the region.

Locations

The four locations were selected in such a way that different levels of air pollution with pesticides could be expected due to different exposure scenarios. The specific locations were as follows:

  1. A garden within the closed village of Mals/Malles Venosta. The location is relatively well protected because the property is surrounded by a hedge and there are further buildings around the property. The location was selected to determine whether spray drift is detectable in built-up areas and at the edge of the fruit production core area.
  2. The second location was chosen as centrally as possible in an orchard in the central Vinschgau. The orchard is cultivated according to biological criteria, but is located in the immediate vicinity of conventional orchards.
  3. A third location was chosen remote from inhabited or cultivated areas above the valley floor in a side valley. The selected site is a slope near a stream course at the road from the village of Burgeis to Schlinig.
  4. Finally, a location was chosen where a lot of spray drift was to be expected without pesticides being used on the site itself. For this purpose, the two collectors were set up on a further organic farm in the central Vinschgau in such a way that air from the surroundings could very well flow into them.

Results

Further results are as follows:

  • In the first measurement period from 23rd February to 16th March none of the 29 active substances was detected at any of the four locations.
  • In the following eight measurement periods a total of 20 active substances was detected and up to 14 different substances were found in one sample at the same time.
  • The more distant the site is from the conventional orchards, the lower the amount and number of active substances detected. The highest pollution could be found at site D, followed by B, A and C.
  • Six active substances were detected at all four locations: fluazinam, captan, phosmet, chlorpyrifos-methyl, dithianon und imidacloprid. This indicates an intensive use and a significant potential of transport through air.
  • Six further active substances are found at the three locations D, B and A: dodin, penconazole, cyprodinil, difenoconazole, thiacloprid and etofenprox. So they are even detectable in the air in the village of Mals in a fairly well protected environment.

Many of the pesticides that have been detected in the samples represent a significant threat to humans and the environment. Thus, for example

  • captan is labeled with H351 (“suspected of causing cancer”) in the hazard classification of the EU Pesticides Database.
  • The insecticide thiacloprid, besides being suspected of causing cancer, is classified as “May damage fertility” and “May damage the unborn child” (H360FD) and is closely monitored by the EU Commission because it interferes with the human hormone system.
  • imidacloprid is extremely toxic to bees and other insects. The median lethal dose for individual honeybees was stated to be 3.8 ng in the authorisation procedure.

Conclusion

Overall, the results prove a significant transport of pesticides over distances of many kilometres up to remote side valleys.

The results provide a clear indication of the difficult conditions for organic farms in the vicinity of intensive, conventional apple orchards.

In addition, the results point out a risk aspect that has been underestimated up to now: Compared to individual active substances, the overall pollution with pesticides causes a significantly higher exposure that continues to exist over the course of the season and thus a correspondingly higher risk potential.

Reference.

Related