Why are Doctors Talking Toxins ?

And how to reduce exposure to toxic chemicals worldwide ?

It’s time to shift the burden of proof, from scientists, back to the chemical industry

Video published on 5 June 2019, by UCSF Program on Reproductive Health and the Environment.

Nearly half of (Italian) playgrounds tested contaminated by pesticide(s)

Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards

2019 Study Abstract

Pesticide levels are generally monitored within agricultural areas, but are commonly not assessed at public places. To assess possible contamination of non-target areas, 71 public playgrounds located next to intensively managed apple and wine orchards were selected in four valleys of South Tyrol (northern Italy). Further, the impact of environmental site characteristics on the number and concentration of pesticides was assessed. Grass samples from the selected playgrounds were collected and screened for 315 pesticide residues using standard gas chromatography and mass spectrometry.

Nearly half of the playgrounds (45%) were contaminated by at least one pesticide and a quarter (24%) by more than one. Eleven of the 12 different detected pesticides are classified as endocrine-active substances including the insecticide phosmet and the fungicide fluazinam showing the highest concentrations (0.069 and 0.26 mg kg−1, respectively). Additionally, one disinfectant and one preservation agent was found. Playgrounds in Venosta valley were most often contaminated (76% of all investigated playgrounds), highest concentrations were found in the Low Adige (2.02 mg kg−1). Pesticide concentrations were positively associated with areal proportion of apple orchards in the surroundings, the amount of rainfall and wind speed. In contrast, increasing global irradiance, opposite wind direction, increasing distance to agricultural sites and high wind speeds when pesticide application was not allowed were associated with decreasing pesticide contamination.

This study is among the first investigating pesticide contamination of public playgrounds together with environmental factors in areas with pesticide-intensive agriculture at the beginning of the growing season. It is likely that playgrounds will be affected by more pesticides and higher concentrations over the course of the crop season. The result, that the majority of the detected pesticides are classified as endocrine active is worrisome as children are especially vulnerable. Hence, we recommend that pesticide risk assessments should better include protection measures for non-target areas.
Image Antonio Thomás Koenigkam Oliveira.

Astroturfing : les fichiers secrets de Monsanto

Enquête de Laura Aguirre de Carcer, Tristan Waleckx et les équipes d’”Envoyé spécial” diffusée le 16 mai 2019

Nouvelles révélations sur les documents secrets de Monsanto. Après le fichage illégal de journalistes, de chercheurs, de politiques, l’équipe d'”Envoyé spécial” a découvert une autre stratégie : l’astroturfing.

Des agences de communication travaillant pour Monsanto ont créé un “faux mouvement spontané” de défense du glyphosate. Des hôtesses ont ainsi recruté des agriculteurs sans jamais leur dire qu’elles travaillaient pour la firme. L’objectif était de créer un groupe d’influence venant du terrain, en dissimulant cette stratégie aux premiers concernés : les agriculteurs. Référence.


Fichage Généralisé Organisé par Monsanto et une Société de Lobbying

Révélations, Le 20Heures France2, 9 May 2019

“Elus, hauts fonctionnaires, journalistes… Ils auraient été fichés et notés en fonction de leur degré de soutien à loMonsanto. Même Ségolène Royal, alors ministre de l’Environnement. Elle est dite “à marginaliser” Référence.

Une fuite de documents confidentiels, qui portent la signature d’une agence de communication travaillant pour Monsanto, a permis aux journalistes de l’Œil du 20 heures de mettre la main sur des documents inédits.

Des pratiques vraisemblablement illégales. Des plaintes ont été déposées.

“Générations Futures” : c’est 20 ans de lutte contre les pesticides !

Ca donne quoi ? Découvrez-le en 4 minutes vidéo !

Alors que la 14e Semaine pour les alternatives aux pesticides se clôture, nous voulions prendre le temps de faire le bilan. L’occasion de se replonger, avec vous, dans les moments les plus marquants de l’histoire de Générations Futures depuis sa création et de partager ensemble ses avancées et ses tournants.

Rappelez-vous : chaque action, chaque victoire, nous la devons à votre générosité et à votre soutien. Du fond du cœur, merci. Rien n’aurait été et ne sera possible sans vous. Pour nous aider à œuvrer pour un avenir sans pesticides de synthèse, rejoignez-nous, parlez de l’association autour de vous, faites un don. Chaque action compte ! Référence.

Glyphosate could be altering the wildlife and organisms at the base of the food chain

Glyphosate impairs learning in mosquito larvae (Aedes aegypti) at field-realistic doses

Glyphosate-based herbicides are not supposed to harm wildlife. But lab studies – such as this – keep finding otherwise…

What’s the world’s most widely used herbicide doing to tiny critters? asks Environmental Health News. Image Darron Birgenheier.

2019 Study Abstract

Glyphosate is the most widely used herbicide in the world. In the last years, the number of studies revealing deleterious effects of glyphosate on non-target species has been increasing. We studied the impact of glyphosate at field-realistic doses on learning in mosquito larvae (Aedes aegypti). Larvae of A. aegypti live in small water bodies and perform a stereotyped escape response when a moving object projects its shadow on the water surface. Repeated presentations of an innocuous visual stimulus induce a decrease in response due to habituation, a non-associative form of learning. In this study, different groups of larvae were reared in water containing different concentrations of glyphosate that can be found in the field (50 µg/l, 100 µg/l, 210 µg/l and 2 mg/l). Larvae reared in a glyphosate solution of 2 mg/l could complete their development. However, glyphosate impaired habituation. The higher the dose, the stronger the deleterious effects on learning abilities. This protocol opens new avenues to further studies aiming at understanding how glyphosate affects non-target organisms as insects. Habituation in mosquito larvae could serve as a parameter for testing the impact of pollutants in water bodies.

40 years after exposure, Pesticide linked to higher breast cancer risk

DDT and Breast Cancer: Prospective Study of Induction Time and Susceptibility Windows

According to a recent study, DDT exposure before puberty may have increased the breast cancer risk for women in their 50s. Study is the latest to suggest early-life exposures, even prior to birth, may hold the key to understanding who gets diseases, Environmental Health News reports.

2019 Study Abstract

In a previous Child Health and Development Studies report, p, p’-DDT was associated with a fivefold increased risk of premenopausal (before age 50 years) breast cancer for women first exposed before puberty. Here we extend our observation to breast cancer diagnosed during early postmenopause (ages 50–54 years) to determine whether age at diagnosis modifies the interaction of DDT with age at exposure.

We conducted a second prospective, nested case-control study in the Child Health and Development Studies (153 incident breast cancer cases diagnosed at ages 50–54 years and 432 controls matched to cases on birth year). These were analyzed separately and pooled with our previous study (129 breast cancer cases diagnosed at ages 31–49 years and 129 controls matched on birth year). Blood samples were obtained during pregnancy (median age, 26 years), 1–3 days after delivery from 1959 to 1967 in Oakland, California. Serum was assayed for p, p’-DDT, o, p’-DDT, and p, p’-DDE. Odds ratios (ORs) below are given for doubling of serum p, p’-DDT. All statistical tests were two-sided.

For early postmenopausal breast cancer, p, p’-DDT was associated with risk for all women (ORDDT 50–54 = 1.99, 95% CI = 1.48 to 2.67). This association was accounted for by women first exposed to DDT after infancy (ORDDT 50–54 for first exposure after infancy = 2.83, 95% CI = 1.96 to 4.10 vs ORDDT 50–54 for first exposure during infancy = 0.56, 95% CI = 0.26 to 1.19; Pinteraction DDT x age at first exposure = .01). In contrast, for premenopausal breast cancer, p, p’-DDT was associated with risk among women first exposed during infancy through puberty, but not after (ORDDT<50 for first exposure during infancy = 3.70, 95% CI = 1.22 to 11.26, Pinteraction DDT x age at first exposure x age at diagnosis = .03).

p, p’-DDT was associated with breast cancer through age 54 years. Risk depended on timing of first exposure and diagnosis age, suggesting susceptibility windows and an induction period beginning in early life. DDT appears to be an endocrine disruptor with responsive breast targets from in utero to menopause.

Pesticide residues found in 98 percent of Canadian honey samples

Determination of glyphosate, AMPA, and glufosinate in honey by online solid-phase extraction-liquid chromatography-tandem mass spectrometry

A new study is the latest evidence that glyphosate herbicides are so pervasive that residues can be found in foods not produced by farmers using glyphosate.

As U.S. regulators continue to dance around the issue of testing foods for residues of glyphosate weed killers, government scientists in Canada have found the pesticide in 197 of 200 samples of honey they examined, Environmental Health News reports, March 22, 2019.


A simple method was developed for the simultaneous determination of glyphosate, its main degradation product (aminomethylphosphonic acid), and glufosinate in honey. Aqueous honey solutions were derivatised offline prior to direct analysis of the target analytes using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Using the developed procedure, accuracies ranging from 95.2% to 105.3% were observed for all analytes at fortification levels of 5, 50, and 150 μg kg−1 with intra-day precisions ranging from 1.6% to 7.2%. The limit of quantitation (LOQ) was 1 μg kg−1 for each analyte. Two hundred honey samples were analysed for the three analytes with AMPA and glyphosate being most frequently detected (99.0% and 98.5% of samples tested, respectively). The concentrations of glyphosate were found to range from <1 to 49.8 μg kg−1 while those of its degradation product ranged from <1 to 50.1 μg kg−1. The ratio of glyphosate to AMPA was found to vary significantly amongst the samples where both analytes were present above the LOQ. Glufosinate was detected in 125 of 200 samples up to a maximum concentration of 33.0 μg kg−1.

An agroecological Europe in 2050: multifunctional agriculture for healthy eating

Findings from the Ten Years For Agroecology (TYFA) modelling exercise

The Independent Institution for Sustainable Development and International Relations (IDDRI) published its “Ten Years for Agroecologyresearch, showing that a transition to a kind of agriculture that is free from synthetic chemistry is absolutely realistic.


Jointly addressing the challenges of sustainable food for Europeans, the preser-vation of biodiversity and natural resources and the fight against climate change requires a profound transition of our agricultural and food system. An agroeco-logical project based on the phasing-out of pesticides and synthetic fertilizers, and the redeployment of extensive grasslands and landscape infrastructure would allow these issues to be addressed in a coherent manner.


The TYFA project explores the possibility of generalising such agroecology on a European scale by analysing the uses and needs of current and future agri-cultural production. An original quantitative model (TYFAm), linking on a systemic manner agricultural production, production methods and land use, makes it possible to analyse retrospectively the functioning of the European food system and to quantify an agroecological scenario by 2050 by testing the implications of different hypotheses.


Europe’s increasingly unbalanced and over-rich diets, particularly in animal products, contribute to the increase in obesity, diabetes and cardiovascular diseases. They are based on intensive, highly dependent agriculture: (i) synthetic pesticides and fertilizers—with proven health and environmental conse- quences; (ii) imports of vegetable proteins for animal feed—making Europe a net importer of agricultural land. A change in diet less rich in animal products thus opens up prospects for a transition to an agroecology not bound to main-tain current yields, thus opening new fields for environmental management.


The TYFA scenario is based on the widespread adoption of agroecology, the phasing-out of vegetable protein imports and the adoption of healthier diets by 2050. Despite an induced drop in production of 35% compared to 2010 (in Kcal), this scenario: – provides healthy food for Europeans while maintaining export capacity; – reduces Europe’s global food footprint; – leads to a 40% reduction in GHG emissions from the agricultural sector; – regains biodiversity and conserves natural resources.Further work is needed and underway on the socio-economic and policy impli-cations of the TYFA scenario.

Glyphosate-exposed shows a change in intestinal flora, study

The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome

A study published on May 2018 by an international consortium of researchers, shows a change in intestinal flora in exposed animals, compared to control group. Image credit telegraph.

2019 Study Abstract

Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be “safe” (the US Acceptable Daily Intake – ADI – of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats.

Glyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis.

Microbiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls.

This study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood.