Overview of known plastic packaging-associated chemicals and their hazards

Which hazardous chemicals are associated with plastic packaging?

The use of plastic packaging is increasing globally, causing environmental and human health concerns. In 2015 annual plastic production was 380Mt, of which about 40 per cent was used in packaging, with the majority being used in food packaging.

The 906 substances which are most likely to be associated with plastic packaging have been published on the Data Commons websiteAt least 148 of the 906 chemicals most likely to be associated with plastic packaging were identified as particularly hazardous based on several harmonized hazard data sources, and 35 of the chemicals listed are regarded as endocrine disrupting chemicals (EDCs), CHEM Trust reports.

2018 Study Highlights

  • Database of Chemicals associated with Plastic Packaging (CPPdb) is presented.
  • CPPdb contains chemicals used in manufacturing and/or present in final articles.
  • 906 chemicals identified as likely, 3377 chemicals as possibly associated.
  • Hazard data: CLP classifications, EDC, PBT, vPvB identifications explored.
  • Data gaps concerning both the use and toxicity of numerous substances identified.

Abstract

Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations’ Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.

Human Consumption of Microplastics

You could be swallowing a credit card’s weight in plastic every week

Globally, we are ingesting an average of 5 grams of plastic every week, the equivalent of a credit card, a new study suggests.

Abstract

Microplastics are ubiquitous across ecosystems, yet the exposure risk to humans is unresolved.
Focusing on the American diet, we evaluated the number of microplastic particles in commonly consumed foods in relation to their recommended daily intake.The potential for microplastic inhalation and how the source of drinking water may affect microplastic consumption were also explored.

Our analysis used 402 data points from 26 studies, which represents over 3600 processed samples.

Evaluating approximately 15% of Americans’ caloric intake, we estimate that annual microplastics consumption ranges from 39000 to 52000 particles depending on age and sex. These estimates increase to 74000 and 121000 when inhalation is considered. Additionally, individuals who meet their recommended water intake through only bottled sources may be ingesting an additional 90000 microplastics annually, compared to 4000 microplastics for those who consume only tap water.

These estimates are subject to large amounts of variation; however, given methodological and data limitations, these values are likely underestimates.

See also CNN press release.

60 MiNueTs Toxic

UCSF Program on Reproductive Health and the Environment, 2017

Video published on 18 Apr 2019 by the UCSF Program on Reproductive Health and the Environment.

The University of California San Francisco (UCSF) Program on Reproductive Health and the Environment (PRHE)’s mission is to create a healthier environment for human reproduction and development through advancing scientific inquiry, clinical care and health policies that prevent exposures to harmful chemicals in our environment.

More Information

Adult and Prenatal Chemical Exposures

Breast Cancer Prevention Partners, with Tracey Woodruff, Ph.D., Mar 2019

  • How am I exposed to chemicals?
  • What are prenatal exposures?
  • How can I reduce my own personal exposures?
  • What more can I do to help make a change?

Featuring BCPP Science Advisory Panel member Tracey Woodruff, Ph.D., Director of the Program on Reproductive Health and the Environment, University of California, San Francisco, Professor in the Department of Obstetrics, Gynecology, and Reproductive Sciences and Philip R. Lee Institute for Health Policy Studies at UCSF

EDC-Mix Risk policy brief

Key messages on the risks of exposure to mixtures of endocrine disrupting chemicals

Safe chemicals for future generations

EDC-MixRisk is an EU project designed to ultimately lead to a safer environment for our children, an environment where the next generation can grow old without their quality of life being threatened by environmental chemicals or their mixtures.

The endocrine disrupting properties of chemicals, and mixtures thereof, have become a global concern. A normally functioning healthy endocrine system is essential for our ability to reproduce and develop. Endocrine disrupting chemicals (EDCs) are linked to serious health problems such as diabetes, obesity, neurodevelopmental disorders and reproductive problems. The fact that we are exposed to complex mixtures of EDCs is of particular concern.

EDC-MixRisk is an EU Horizon 2020 research project that studied the effects of prenatal exposure to mixtures of suspected EDCs on the development and health in children. Our work emphasises potential effects of EDC mixtures during foetal development and provides new tools and approaches for mixture risk assessment.

Key findings

  • Chemicals identified in pregnant women within the general population originated from different sources and application areas which are currently regulated by different pieces of European Union legislations.
  • Epidemiological analysis showed that prenatal exposure to mixtures of EDCs was associated with various effects in children’s health and development. Some effects were sex specific.
  • The tested mixtures affected hormone-regulated and disease-relevant outcomes in a variety of experimental models at the same concentrations found in the pregnant women.
  • Applying our novel whole mixture approach indicates a higher risk for children compared to risk estimated by current methods based on a single compound assessment.

Read the full EDC-MixRisk policy brief on edcmixrisk.ki.se, 2019.
Read the press release, 26 March, 2019.

Why are ObGyns Talking Toxins ?

Let’s make environmental health part of health care

Doctors from 125 countries want policies to prevent exposure to toxic chemicals

Produced for PRHE by Susan Lamontagne, Public Interest Media Group, for the International Federation of Gynecology and Obstetrics (FIGO) XXI World Congress on September 30, 2015.

Why are Doctors Talking Toxins ?

And how to reduce exposure to toxic chemicals worldwide ?

It’s time to shift the burden of proof, from scientists, back to the chemical industry

Video published on 5 June 2019, by UCSF Program on Reproductive Health and the Environment.

The effects of an EDCs cocktail of BPA + DES + NP

Analysis of individual and combined estrogenic effects of bisphenol, nonylphenol and diethylstilbestrol in immature rats with mathematical models

2019 Study Abstract

Background
Traditional toxicological studies focus on individual compounds. However, this single-compound approach neglects the fact that the mixture exposed to human may act additively or synergistically to induce greater toxicity than the single compounds exposure due to their similarities in the mode of action and targets. Mixture effects can occur even when all mixture components are present at levels that individually do not produce observable effects. So the individual chemical effect thresholds do not necessarily protect against combination effects, an understanding of the rules governing the interactive effects in mixtures is needed. The aim of the study was to test and analyze the individual and combined estrogenic effects of a mixture of three endocrine disrupting chemicals (EDCs), bisphenol A (BPA), nonylphenol (NP) and diethylstilbestrol (DES) in immature rats with mathematical models.

Method
In the present study, the data of individual estrogenic effects of BPA, NP and DES were obtained in uterotrophic bioassay respectively, the reference points for BPA, NP and DES were derived from the dose-response ralationship by using the traditional no observed adverse effect (NOAEL) or lowest observed adverse effect level (LOAEL) methods, and the benchmark dose (BMD) method. Then LOAEL values and the benchmark dose lower confidence limit (BMDL10) of single EDCs as the dose design basis for the study of the combined action pattern. Mixed prediction models, the 3 × 2 factorial design model and the concentration addition (CA) model, were employed to analyze the combined estrogenic effect of the three EDCs.

Results
From the dose-response relationship of estrogenic effects of BPA, NP and DES in the model of the prepuberty rats, the BMDL10(NOAEL) of the estrogenic effects of BPA, NP and DES were 90(120) mg/kg body weight, 6 mg/kg body weight and 0.10(0.25) μg/kg body weight, and the LOAEL of the the estrogenic effects of three EDCs were 240 mg/kg body weight, 15 mg/kg body weight and 0.50 μg/kg body weight, respectively. At BMDL10 doses based on the CA concept and the factorial analysis, the mode of combined effects of the three EDCs were dose addition. Mixtures in LOAEL doses, NP and DES combined effects on rat uterine/body weight ratio indicates antagonistic based on the CA concept but additive based on the factorial analysis. Combined effects of other mixtures are all additive by using the two models.

Conclusion
Our results showed that CA model provide more accurate results than the factorial analysis, the mode of combined effects of the three EDCs were dose addition, except mixtures in LOAEL doses, NP and DES combined effects indicates antagonistic effects based on the CA model but additive based on the factorial analysis. In particular, BPA and NP produced combination effects that are larger than the effect of each mixture component applied separately at BMDL doses, which show that additivity is important in the assessment of chemicals with estrogenic effects. The use of BMDL as point of departure in risk assessment may lead to underestimation of risk, and a more balanced approach should be considered in risk assessment.

References

  • Full study (free access) : Analysis of individual and combined estrogenic effects of bisphenol, nonylphenol and diethylstilbestrol in immature rats with mathematical models, Environmental health and preventive medicine, NCBI PubMed PMC6515622, 2019 May 13.
  • Image credit Helena Yankovska.
DES DiEthylStilbestrol Resources

Endocrine disruptors have an impact on reproduction for several generations

Endocrine disruptors transgenerationally alters pubertal timing through epigenetic reprogramming of the hypothalamus

2019 Study Abstract

Endocrine disruptors are a rising concern for public health due to their ubiquitous presence affecting reproductive development throughout generations.

We aim at studying the transgenerational effect of an EDC mixture on female sexual development and reproduction.

Female rats (F0 generation) were orally exposed to a mixture of 14 anti-androgenic and estrogenic EDCs or corn oil for 2 weeks before and throughout gestation and until weaning. The mixture was composed of plasticizers (BPA, DBP, DEHP), fungicides/pesticides (Vinclozolin, Procymidon, Prochloraz, Epoxynazole, Linurone, p-p’-DDT), UV filters (4-MBC, OMC), Butylparaben and the analgesic Acetaminophen. Doses were in the human exposure range (μg/kg).

Sexual development and reproductive parameters (vaginal opening, GnRH secretion, estrous cyclicity and folliculogenesis) were studied from F1 to F3 generations. Maternal behavior was measured from F0 to F2 generations. At PND21, mediobasal hypothalamus of the F1 and F3 were removed for gene expression analysis (RNAseq, RT-PCR) as well as for Chromatin Immunoprecipitation of histone modifications at regulatory regions of target genes.

The results show multiple multi- and transgenerational effects after ancestral EDC exposure. While F2 and F3 females showed delayed vaginal opening, decreased percentage of regular estrous cycles, decreased GnRH interpulse interval and altered folliculogenesis, no such changes were detected in F1 animals. These alterations were accompanied with transcriptional and histone posttranslational modifications of key hypothalamic genes involved in puberty and reproduction. We observed a downregulation of estrogen signaling (Esr1), genes involved in the GnRH network (Kisspeptin, Grin2d, Tac3R), maternal behavior (Th, Oxt, Avp, Drd1, Drd2) and stress responsiveness (Nr3c1). Upregulated gens involved glucocorticoid activity (Crh) and metabolism (Pomc, Cart). Concomitantly with transcriptional levels, while downregulated genes present higher levels of repressive histone marks (H3K9me3, H3K27me3) and decreased levels of activational histone marks (H3K4me3, H3K9ac), upregulated genes present the opposite pattern. Such histone marks related to changes in the polycomb/thritorax group of protein balance, involved in the control of female puberty. F1 and F2 females displayed decreased licking while spending more time resting alone. F1 RNAseq showed a reduction in Th, Drd1 and Drd2 mRNA expression. These alterations on maternal behavior are known to cause transgenerational alterations of the development of the corticotropic and gonadotropic axis.

In conclusion, exposure to an environmentally relevant EDC mixture transgenerationally affects sexual development and reproduction throughout epigenetic reprogramming of the hypothalamus. While not yet clear, such effects could be mediated by alterations of maternal behavior caused by exposure to the first generation.

ReferenceImage.

DES and the GENES

Nearly half of (Italian) playgrounds tested contaminated by pesticide(s)

Pesticide contamination and associated risk factors at public playgrounds near intensively managed apple and wine orchards

2019 Study Abstract

Background
Pesticide levels are generally monitored within agricultural areas, but are commonly not assessed at public places. To assess possible contamination of non-target areas, 71 public playgrounds located next to intensively managed apple and wine orchards were selected in four valleys of South Tyrol (northern Italy). Further, the impact of environmental site characteristics on the number and concentration of pesticides was assessed. Grass samples from the selected playgrounds were collected and screened for 315 pesticide residues using standard gas chromatography and mass spectrometry.

Results
Nearly half of the playgrounds (45%) were contaminated by at least one pesticide and a quarter (24%) by more than one. Eleven of the 12 different detected pesticides are classified as endocrine-active substances including the insecticide phosmet and the fungicide fluazinam showing the highest concentrations (0.069 and 0.26 mg kg−1, respectively). Additionally, one disinfectant and one preservation agent was found. Playgrounds in Venosta valley were most often contaminated (76% of all investigated playgrounds), highest concentrations were found in the Low Adige (2.02 mg kg−1). Pesticide concentrations were positively associated with areal proportion of apple orchards in the surroundings, the amount of rainfall and wind speed. In contrast, increasing global irradiance, opposite wind direction, increasing distance to agricultural sites and high wind speeds when pesticide application was not allowed were associated with decreasing pesticide contamination.

Conclusion
This study is among the first investigating pesticide contamination of public playgrounds together with environmental factors in areas with pesticide-intensive agriculture at the beginning of the growing season. It is likely that playgrounds will be affected by more pesticides and higher concentrations over the course of the crop season. The result, that the majority of the detected pesticides are classified as endocrine active is worrisome as children are especially vulnerable. Hence, we recommend that pesticide risk assessments should better include protection measures for non-target areas.
Image Antonio Thomás Koenigkam Oliveira.