How chemicals can affect the health of developing children

There is an increased concern about endocrine-disrupting chemicals, especially their interference on the thyroid gland

The impact of such chemicals on thyroid hormone levels, especially those of pregnant women during the first three months of pregnancy, may result in neurodevelopmental diseases, autism and IQ loss in the unborn child.

Barbara Demeneix, Professor from the French National Museum of Natural History, explains why these chemicals affect the signalling of thyroid hormones and what we can do to protect our children.

Video published on 7 February 2018, by EUchemicals.

The negative impact of the environment on methylation/epigenetic marking in gametes and embryos

A plea for action to protect the fertility of future generations, 17 January 2019

Abstract

Life expectancy has increased since World War II and this may be attributed to several aspects of modern lifestyles. However, now we are faced with a downturn, which seems to be the result of environmental issues. This paradigm is paralleled with a reduction in human fertility: decreased sperm quality and increased premature ovarian failure and diminished ovarian reserve syndromes.

Endocrine Disruptor Compounds (EDCs) and other toxic chemicals: herbicides, pesticides, plasticizers, to mention a few, are a rising concern in today environment. Some of these are commonly used in the domestic setting: cleaning material and cosmetics and they have a known impact on epigenesis and imprinting via perturbation of methylation processes. Pollution from Poly Aromatic Hydrocarbons (PAH), particulate matter (PM), <10 and <2.5 μm and ozone, released into the air all affect fertility. Poor food processing management is a source DNA adducts formation, impairing gametes quality. An important question to be answered is that of nanoparticles (NPs) that are present in food and which are thought to induce oxidative stress. Now is the time to take a step backwards. Global management of the environment and food production is required urgently in order to protect the fertility of future generations.

Reference.

DES and the GENES

Impact of endocrine disrupting chemicals exposure on fecundity as measured by time to pregnancy

A systematic review;, Environmental research, 2018 Dec

Abstract

BACKGROUND
Emerging scientific evidence suggests that exposure to environmental pollutants is associated with negative effects on fecundity as measured by time to pregnancy (TTP).

OBJECTIVES
To conduct a systematic review of the literature on the association between selected endocrine disrupting chemicals (EDCs), and fecundity as measured by TTP in humans. Compounds included in this review are: brominated flame retardants (BFRs) such as hexabromocyclododecane, tetrabromobiphenol A and polybrominated diphenyl ethers; organophosphates flame retardants (OPFRs); and phthalates.

METHODS
Scopus, MEDLINE via Ebscohost and EMBASE databases were searched for articles exploring the relationships between selected EDCs and fecundity as measured by time to pregnancy. We assessed the quality of included studies and evidence for causality was graded using the criteria developed by the World Cancer Research Fund.

RESULTS
14 studies of 191 full-text articles assessed for eligibility were included for qualitative synthesis. Five studies examined BFRs and 10 studies examined phthalates. Among the fourteen, one study assessed both BFRs and phthalates. There were no studies which investigated fecundity as measured by TTP on HBCD, TBBPA, or OPFRs. We recorded plausible fecundity outcomes as measured by TTP related to some of these EDCs. BFRs or phthalates increased TTP. However, results were inconsistent.

CONCLUSION
We recorded mostly weak associations between exposure to selected EDCs and fecundity. However, evidence was considered limited to conclude a causal relationship due to inconsistency of results. The health risks posed by these chemicals in exposed populations are only beginning to be recognized and prospective measurement of the environmental effects of the chemicals in large cohort studies are urgently needed to confirm these relationships and inform policies aimed at exposure prevention

Personal care product use and breast cancer risk

Associations between Personal Care Product Use Patterns and Breast Cancer Risk among White and Black Women in the Sister Study

New Research from USA NIEHS sister study of 47,000 women, suggests a link between frequent and moderate use of beauty products and breast cancer. The study reviews effects of environment and endocrine disruptors on risks of breast cancer and fibroids.

2018 Study Abstract

Background
Many personal care products include chemicals that might act as endocrine disruptors and thus increase the risk of breast cancer.

Objective
We examined the association between usage patterns of beauty, hair, and skin-related personal care products and breast cancer incidence in the Sister Study, a national prospective cohort study (enrollment 2003–2009).

Methods
Non-Hispanic black (4,452) and white women (n=42,453) were examined separately using latent class analysis (LCA) to identify groups of individuals with similar patterns of self-reported product use in three categories (beauty, skin, hair). Multivariable Cox proportional hazards models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between product use and breast cancer incidence.

Results
A total of 2,326 women developed breast cancer during follow-up (average follow-up=5.4y). Among black women, none of the latent class hazard ratios was elevated, but there were <100 cases in any category, limiting power. Among white women, those classified as “moderate” and “frequent” users of beauty products had increased risk of breast cancer relative to “infrequent” users [HR=1.13 (95% CI: 1.00, 1.27) and HR=1.15 (95% CI: 1.02, 1.30), respectively]. Frequent users of skincare products also had increased risk of breast cancer relative to infrequent users [HR=1.13 (95% CI: 1.00, 1.29)]. None of the hair product classes was associated with increased breast cancer risk. The associations with beauty and skin products were stronger in postmenopausal women than in premenopausal women, but not significantly so.

Conclusions
This work generates novel hypotheses about personal care product use and breast cancer risk. Whether these results are due to specific chemicals or to other correlated behaviors needs to be evaluated.

Children’s cereals contain glyphosate residues at high level, second round of tests shows

Another round of tests finds weedkiller widespread in popular cereals and snack bars

Following an initial test last August, a second round of tests commissioned by the Environmental Working Group found the active ingredient in Monsanto’s Roundup weed killer in every sample of popular oat-based cereal and other oat-based food marketed to children.

“People don’t want this pesticide on their food, especially in foods marketed to and consumed by children,”

said Tasha Stoiber, senior scientist at EWG.

Almost all of the samples tested by EWG had residues of glyphosate at levels higher than what EWG scientists consider protective of children’s health with an adequate margin of safety.

Bisphenol F (BPF) and Bisphenol S (BPS)

A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes

Systematic review is an approach to answering research questions by systematically selecting, evaluating, and integrating scientific evidence.

Evidence that BPA might be harmful to human health due to its actions as an endocrine-disrupting chemical has prompted the industry to seek alternative chemicals.

This analysis summarizes in vivo and in vitro literature and compare the hormonal potency of BPS and BPF to BPA using the in vitro studies.

Abstract

Background
Increasing concern over bisphenol A (BPA) as an endocrine-disrupting chemical and its possible effects on human health have prompted the removal of BPA from consumer products, often labeled “BPA-free.” Some of the chemical replacements, however, are also bisphenols and may have similar physiological effects in organisms. Bisphenol S (BPS) and bisphenol F (BPF) are two such BPA substitutes.

Objectives
This review was carried out to evaluate the physiological effects and endocrine activities of the BPA substitutes BPS and BPF. Further, we compared the hormonal potency of BPS and BPF to that of BPA.

Methods
We conducted a systematic review based on the Office of Health Assessment and Translation (OHAT) protocol.

Results
We identified the body of literature to date, consisting of 32 studies (25 in vitro only, and 7 in vivo). The majority of these studies examined the hormonal activities of BPS and BPF and found their potency to be in the same order of magnitude and of similar action as BPA (estrogenic, antiestrogenic, androgenic, and antiandrogenic) in vitro and in vivo. BPS also has potencies similar to that of estradiol in membrane-mediated pathways, which are important for cellular actions such as proliferation, differentiation, and death. BPS and BPF also showed other effects in vitro and in vivo, such as altered organ weights, reproductive end points, and enzyme expression.

Conclusions
Based on the current literature, BPS and BPF are as hormonally active as BPA, and they have endocrine-disrupting effects.

Pesticide Damage to DNA Found ‘Programmed’ into Future Generations

Atrazine induced epigenetic transgenerational inheritance of disease, lean phenotype and sperm epimutation pathology biomarkers

Dr. Paul Winchester, a pediatrician, and several other researchers including Michael Skinner, professor of biology at Washington State University’s Center for Reproductive Biology, conducted a study to see if there was a link between atrazine in drinking water and birth defects, EcoWatch reports.

“The most alarming (finding) to me is that almost every chemical tested including atrazine reduced fertility in the third generation of offspring.”

2017 Study Abstract

Ancestral environmental exposures to a variety of environmental toxicants and other factors have been shown to promote the epigenetic transgenerational inheritance of adult onset disease. The current study examined the potential transgenerational actions of the herbicide atrazine.

Atrazine is one of the most commonly used herbicides in the agricultural industry, in particular with corn and soy crops. Outbred gestating female rats were transiently exposed to a vehicle control or atrazine. The F1 generation offspring were bred to generate the F2 generation and then the F2 generation bred to generate the F3 generation. The F1, F2 and F3 generation control and atrazine lineage rats were aged and various pathologies investigated. The male sperm were collected to investigate DNA methylation differences between the control and atrazine lineage sperm. The F1 generation offspring (directly exposed as a fetus) did not develop disease, but weighed less compared to controls. The F2 generation (grand-offspring) was found to have increased frequency of testis disease and mammary tumors in males and females, early onset puberty in males, and decreased body weight in females compared to controls. The transgenerational F3 generation rats were found to have increased frequency of testis disease, early onset puberty in females, behavioral alterations (motor hyperactivity) and a lean phenotype in males and females. The frequency of multiple diseases was significantly higher in the transgenerational F3 generation atrazine lineage males and females. The transgenerational transmission of disease requires germline (egg or sperm) epigenetic alterations. The sperm differential DNA methylation regions (DMRs), termed epimutations, induced by atrazine were identified in the F1, F2 and F3 generations. Gene associations with the DMRs were identified. For the transgenerational F3 generation sperm, unique sets of DMRs (epimutations) were found to be associated with the lean phenotype or testis disease. These DMRs provide potential biomarkers for transgenerational disease.

The etiology of disease appears to be in part due to environmentally induced epigenetic transgenerational inheritance, and epigenetic biomarkers may facilitate the diagnosis of the ancestral exposure and disease susceptibility. Observations indicate that although atrazine does not promote disease in the directly exposed F1 generation, it does have the capacity to promote the epigenetic transgenerational inheritance of disease.

The Dangers of Plastic Food Packaging : Food Additives and Child Health Report

Chemicals in Food May Harm Children, Pediatricians’ Group Says

In their Policy Statement and Technical Report, the American Academy of Pediatrics is urging families to limit the use of plastic food containers, cut down on processed meat during pregnancy and consume more whole fruits and vegetables rather than processed food.

Such measures would lower children’s exposures to chemicals in food and food packaging that are tied to health problems such as obesity, Roni Caryn Rabin reports. Featured image credit Fancycrave.com from Pexels.

2018 Technical Report Abstract

Increasing scientific evidence suggests potential adverse effects on children’s health from synthetic chemicals used as food additives, both those deliberately added to food during processing (direct) and those used in materials that may contaminate food as part of packaging or manufacturing (indirect). Concern regarding food additives has increased in the past two decades in part because of studies that increasingly document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. This report focuses on those food additives with the strongest scientific evidence for concern. Further research is needed to study effects of exposure over various points in the life course, and toxicity testing must be advanced to be able to better identify health concerns prior to widespread population exposure. The accompanying policy statement describes approaches policy makers and pediatricians can take to prevent the disease and disability that are increasingly being identified in relation to chemicals used as food additives, among other uses.

The Dangers of Plastic Food Packaging : Food Additives and Child Health Statement

Chemicals in Food May Harm Children, Pediatricians’ Group Says

In their Policy Statement and Technical Report, the American Academy of Pediatrics is urging families to limit the use of plastic food containers, cut down on processed meat during pregnancy and consume more whole fruits and vegetables rather than processed food.

Such measures would lower children’s exposures to chemicals in food and food packaging that are tied to health problems such as obesity, Roni Caryn Rabin reports. Featured image credit Fernanda Rodríguez.

2018 Policy Statement Abstract

Our purposes with this policy statement and its accompanying technical report are to review and highlight emerging child health concerns related to the use of colorings, flavorings, and chemicals deliberately added to food during processing (direct food additives) as well as substances in food contact materials, including adhesives, dyes, coatings, paper, paperboard, plastic, and other polymers, which may contaminate food as part of packaging or manufacturing equipment (indirect food additives); to make reasonable recommendations that the pediatrician might be able to adopt into the guidance provided during pediatric visits; and to propose urgently needed reforms to the current regulatory process at the US Food and Drug Administration (FDA) for food additives. Concern regarding food additives has increased in the past two decades, in part because of studies in which authors document endocrine disruption and other adverse health effects. In some cases, exposure to these chemicals is disproportionate among minority and low-income populations. Regulation and oversight of many food additives is inadequate because of several key problems in the Federal Food, Drug, and Cosmetic Act. Current requirements for a “generally recognized as safe” (GRAS) designation are insufficient to ensure the safety of food additives and do not contain sufficient protections against conflict of interest. Additionally, the FDA does not have adequate authority to acquire data on chemicals on the market or reassess their safety for human health. These are critical weaknesses in the current regulatory system for food additives. Data about health effects of food additives on infants and children are limited or missing; however, in general, infants and children are more vulnerable to chemical exposures. Substantial improvements to the food additives regulatory system are urgently needed, including greatly strengthening or replacing the “generally recognized as safe” (GRAS) determination process, updating the scientific foundation of the FDA’s safety assessment program, retesting all previously approved chemicals, and labeling direct additives with limited or no toxicity data.

Beware the mixture

Despite growing scientific evidence for enhanced toxicity of chemical mixtures, regulation does not adequately capture such combination effects

Humans and wildlife are continuously exposed to multiple chemicals from different sources and via different routes, both simultaneously and in sequence. Scientific evidence for heightened toxicity from such mixtures is mounting, yet regulation is lagging behind. Ensuring appropriate regulation of chemical mixture risks will require stronger legal stimuli as well as close integration of different parts of the regulatory systems in order to meet the data and testing requirements for mixture risk assessment.

Until about a decade ago, toxicologists, risk assessors, and regulators regarded risks from chemical mixtures as negligible, as long as exposures to all single chemicals in the cocktail were below the levels judged to be safe for each chemical alone. However, an increasing body of scientific evidence has challenged this notion, showing that a neglect of mixture effects can cause chemical risks to be underestimated. International bodies such as the World Health Organization now acknowledge the need for considering mixtures in chemical risk assessment and regulation. This would align toxicological risk assessment with the clinical sciences and their long tradition of investigating drug-drug interactions. Yet, with few exceptions, regulatory systems around the world still focus overwhelmingly on single-chemical assessments, and the translation of scientific evidence about mixture effects into better regulation is extremely slow.

Continue reading Regulate to reduce chemical mixture risk on ScienceMag, 20 Jul 2018.